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Abstract

How do people form expectations about future prices in financial markets? One of the

dominant learning rules that explains the forecasting behavior is the Adaptive Expect-

ation Rule (ADA), which suggests that people adjust their predictions by adapting to

the most recent prediction error at a constant weight. However, this rule also implies

that they will continually learn and adapt until the prediction error is zero, which

contradicts recent experimental evidence showing that people usually stop learning

long before reaching zero prediction error. A more recent learning rule — Reference

Model Based Learning (RMBL) — extends and generalizes ADA, hypothesizing that:

i) People apply ADA but dynamically adjust the adaptive coefficient with regards to

the auto-correlation of the prediction error in the most recent two periods; ii) Mean-

while, they also utilize a satisficing rule so that people would only adjust their adaptive

coefficient when the prediction error is higher than their anticipation. This paper util-

izes a rich set of experimental data with observations of 41,490 predictions from 801

subjects from the Learning-to-Forecast Experiments (LtFEs), i.e., the experiment that

has been used to study expectation formation. Our results concludes that RMBL fits

better than ADA in all the experiments.
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1 Introduction

How do people form expectation about future prices in financial market?

The rational expectations hypothesis (REH) has been the dominant paradigm in expecta-

tion formation since Muth (1961) and Lucas Jr (1972). It suggests that people’s expectations

are the objective mathematical expectations conditional upon the available information, as-

suming that they have all the information of the underlying market equilibrium; as well

as the mental capacity to calculate this rational expectation forecasts. Later, bounded ra-

tionality literature argue that it is possible for agents to not have perfect knowledge of the

underlying market equilibrium equations and not to possess perfect knowledge about the

beliefs of all other agents in the market (Sonnemans et al., 2004). At the same time, it is

also argued that people may not endowed with enough mental capacity to easily calculate

the complicated market equilibrium.

In response, many other learning heuristics have been proposed in an attempt to under-

stand how people actually form expectations when they do not know the law of motion of

prices, as a replacement for REH. Adaptive expectation rule (ADA; Evans and Honkapohja,

2001) is one of the dominant heuristics that have gained attention by finding support in

survey and experimental data.

ADA suggests that people adjust their prediction by adapting to the most recent predic-

tion error at a constant weight1, which also means they will perpetually adapt to the past

prediction error until they reach no prediction error. But the recent experimental evidence

suggest that subjects implement a stopping rule on their learning, i.e., employ a simple sat-

isficing heuristic. Bao et al. (2022) designed an experiment to test whether subjects submit

prediction on the price following least square learning (i.e., by estimating the coefficient in

the principle of minimizing the sum of the squared prediction error). Specifically, they tasked

the subjects with predicting asset prices in an experimental financial market through asking

them to provide structural expectations instead of point predictions of price in a cobweb

economy model. They find that even when they are endowed with the correct perceived law

of motion, subjects still choose to employ a simple satisficing approach, instead of constant

learning using the least square learning2 which would lead them to the lowest prediction

error.

1ADA hypothesizes that pet = pet−1 + Ḡ(pt−1 − pet−1). p
e denotes the prediction and p denotes the realized

value, where Ḡ is a constant and ranges between 0 and 1. In other disciplines, ADA is also known as “Model-
Free Reinforcement Learning”, “Rescorla-Wagner model”, or constant α Monte-Carlo methods (Sutton and
Barto, 2018).
2See discussion on how least square learning differs from ADA in footnote 4.
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A recent model called reference-model based learning (RMBL) proposed by Bossaerts

(2018) incorporate this satisficing heuristic, and it has also been extended to model investors’

behavior in asset pricing (Berrada et al., 2024). The RMBL model can be regarded as a

generalized adaptive expectation, hypothesizing that people’s prediction adapts to prediction

error with respect to a reference model. In other words, it extends ADA in two important

aspects as follows.

First, RMBL involves a dynamic weighted average of the previous prediction and the last

observed price. Specifically, the weight increases (decreases) — implying a stronger (weaker)

adaptation to the prediction error—when people under-adjust (over-adjust) the prediction

error for two consecutive periods, leading to a positive (negative) correlation in the prediction

error.

The learning approach where people adjust with regards to the correlation of the pre-

diction error in the most recent two periods is similar as the sample autocorrelation (SAC)

learning Hommes and Sorger (1998) proposed.3 Simply put, SAC suggests that people ad-

apt in the similar fashion to RMBL, just that people in SAC are with perfect forecast but

their counterpart in RMBL are rather myopic. First, SAC user are adapting to the distance

between most recent realized price and the long run average price, instead of the distance

between the most recent realized price the most recent prediction as in RMBL. Second, SAC

assumes subjects to update belief in a fashion that takes the full history of the autocorrela-

tion of the prediction error into the consideration, while RMBL assumes that subjects only

consider the autocorrelation of the price in the most recent two periods.4

Secondly, there is a stopping rule or satisficing rule (Simon, 1955) in RMBL—where

people would only speed up learning by adjusting the weights when the squared prediction

error is larger than a threshold5. The threshold is primarily modeled as the error from a

3The theory of SAC suggests that the prediction is the sum of the long-run average realized price, plus
the product of the first-order autocorrelation coefficient of the prediction error and the deviation of the
previous price from the long-run average. Given the price is a convergent sequence, the sign of the first-order
autocorrelation coefficient is the same as the autocorrelation of the price. Mathematically, it hypothesizes
that pet = α + β(pt−1 − α), where α is the long-run average price, α = p̄, with p̄ = limT→∞

1
T+1

∑T
t=0 pt;

for β is the first-order autocorrelation coefficient, sgn(βj) = sgn(ρj) when (pt)
∞
t=0 is a convergent sequence,

where ρj = limT→∞
cj,T
c0,T

, j ≥ 1, and cj,T = 1
T+1

∑T−j
t=0 (pt − p̄)(pt+j − p̄). pe denotes the prediction and p

denotes the realized value.
4But SAC is still less demanding for the subjects compared to adaptive learning (or known as least square
learning). This is because least square learning hypothesizes that people update the belief in a way that
minimizes the square error of the prediction error. Mathematically, α is the same as in SAC, but βt =∑t−1

i=1(pi−p̄−
t )(pi−p̄+

t )∑t−1
i=1(pi−p̄−

t )2
for t ≥ 2, where p̄−t = 1

t

∑t−1
i=0 pi , and p̄+t = 1

t

∑t
i=0 pi.

5RMBL is built on the learning approach that models a estimated binary learning speed to changes pro-
portionally with the size of prediction error (Pearce and Hall, 1980).
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reference model. In a way, the reference model could be viewed as encapsulating the notion

of ambition and aspirations, so that the learner will be satisfied if her realized prediction

error is no larger than the prediction error from a reference model6 (Bossaerts, 2018).

In this paper, we test whether RMBL explains the experimental data in the learning to

forecast experiment (LtFE), an experimental setup primarily used to study subjects’ expect-

ation formation by incentivizing subjects to submit the best prediction for the next period’s

price. We utilize a rich set of experimental data with observations of 41,490 predictions from

801 subjects from the Learning-to-Forecast Experiment (LtFEs). The advantage of LtFEs

— compared to other more common market like double auctions — is that it provides a

clean elicitation on price prediction. Not only does the payoff function incentivize subjects

to submit their best price predictions that are closer to the realized price, but the direct price

belief in LtFEs also avoids the “testing joint hypothesis” problem that occurs in traditional

markets where people submit quantity decisions. Specifically, it is possible for subjects to

accurately predict the price but fail to translate the price information into optimal trading

quantities.

The challenging aspect of testing whether subjects implement RMBL is that we lack

knowledge of which reference model, and hence its resulting prediction error, subjects are

comparing the realized prediction error with during the experiment. Specifically, although

the reference model is defined as a Kalman filter in Bossaerts (2018), we still do not know

that specific constant weight subjects assign to the past prediction error when adjusting its

prediction. In turn, we are unaware of the prediction error from the Kalman filter for each

subject. In fact, when the latter work of Berrada et al. (2024) applies RMBL to asset pricing,

there is nowhere to find the Kalman filter. Instead, the reference model is defined as the

desired level of mean return and return volatility.

In a way, it suggests that the reference model can be any model. Therefore, the key

point is not to find out the exact prediction error from one specific reference model; rather,

it is that subjects stop adapting to the prediction error when the error is small enough —

or smaller than a constant threshold. In turn, we refer to the prediction error anticipated

from the reference model as the “maximum allowable error” in this paper. Note that the

maximum allowable error of RMBL users must be greater than zero. This is because those

with a maximum allowable error of zero cannot be categorized as an agent who is satisficing,

6In active inference, the reference model guide actions with the goal of minimizing inference complexity
while maximizing prediction accuracy. In engineering, the reference model acts like a principal to control
surprise, where the agent would compare the observable outcome from his action with the desired outcome
from the reference model. As discussed later, reference model in RMBL is not a specific model and can be
any model depending on the context.
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but rather as an agent whose sole aim is to optimize.

We set up a simple regression equation to conduct a horse race test and determine whether

the data fits more closely to RMBL against incremental delta-bar-delta algorithm (Sutton,

1992; i.e., RMBL without satisficing rule; henceforth “IDBD”) and ADA (RMBL with a

constant gain factor). Our results support the statement that decision-making based on

minimizing surprise7 relative to reference world has become a key method to ensure fast

adaption in an ever-changing world (Berrada et al., 2024).

We find that RMBL can explain all the experiments in our dataset from at least one

of either the discrete or continuous perspectives. Specifically, we find that in most of the

experiments, the estimated binary learning speed—the incidence where there is an increment

of adaptive response with regards to positive correlation of the error term—increases when

there is a larger absolute prediction error. In other words, this observation is in line with

predictions from RMBL, as it suggests that in the LtFE: i) Each time a subject makes

a forecast, they attempt to minimize prediction error by adjusting the coefficient on how

they adapt to prediction errors occurring in that period, and ii) they satisfice, meaning

they stop adjusting the coefficient as long as the prediction error in that period is tolerable.

Furthermore, IDBD could also provide explanations for 3 out of the total 18 experiments in

either discrete or continuous analyses. By contrast, there is no evidence showing that ADA

fits best among the three learning models in any of the experiments.

Furthermore, we also find supporting evidence suggesting that the principle of RMBL,

particularly regarding the estimated binary learning speed, could be extended to estimated

continuous learning speed. Specifically, when conducting analyses that are robust to outliers,

we find evidence that the estimated continuous learning speed—the increment in the mag-

nitude of adaptive response with regard to the positive correlation of the error term—also

increases when there is a larger absolute prediction error8.

Overall, this paper makes two main contributions to the literature.

Firstly, to the best of our knowledge, this is the first paper that tests whether people

follow RMBL in an economic experiment. All existing experimental evidence that partially

supports the notion that subjects update their belief in a prediction task following RMBL

comes from studies in neuroscience. For example, by studying the neurobiological mechan-

7Surprise is defined as the outcome prediction error that is larger than the reference model expected in
Bossaerts (2018).
8In sum, we conduct two analyses, estimated binary learning speed and estimated continuous learning speed.
And for each analyses, we look at them from discrete and continuous perspective, due to the reasons that
will be laid out in Section 4
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isms, d’Acremont and Bossaerts (2016; N=21) find that subjects exhibit a dynamic estimated

binary learning speed. In their experiment, subjects are tasked to guide a robot to track

closely to a moving target. The results show that subjects reduce the estimated binary

learning speed below baseline when the autocorrelation of the prediction errors is estimated

to be negative, while increasing it when the autocorrelation of the prediction errors is pos-

itive. Additionally, neuroscience work also find evidence that the insula is responsible for

people’s satisficing behavior. Specifically, Danckert et al. (2012; N=35) find that optimiza-

tion but without satisficing typically emerges in left-hemisphere lesion patients, specifically

those with lesions in the insula, but not in the healthy controls. While neural evidence has

suggested that subjects implement RMBL, their sample size is small because data collec-

tion in neuroscience (e.g., using fMRI) is rather complicated. In contrast, our study utilizes

rich observations of 41,490 predictions from 801 subjects in 18 economic experiments, where

subjects are asked to play the role of financial forecasters, and their only task is to submit

a point prediction on the price in the next period as accurately as possible. As a result,

we find that subjects’ learning fits RMBL the best. Furthermore, we also find supporting

evidence suggesting that the principle of RMBL, particularly regarding the estimated binary

learning speed, could also be extended to estimated continuous learning speed.

Secondly, we contribute to the literature testing learning rules in the financial market.

Heuristics switching model (HSM; Anufriev and Hommes, 2012) has been proposed as a

universal model for learning behavior in LtFEs, capable of explaining substantially different

price dynamics across various groups in the asset pricing experiment of (Hommes et al.,

2005). The concept behind HSM is that in each period, each subject selects from a menu of

forecasting heuristics such as ADA, trend-following rules, or anchoring and adjusting rules.

The notion is that subjects are more likely to switch to a specific rule when it performs better

— in terms of generating smaller forecasting errors — in the recent past9. In contrast, the

results from this paper suggest the possibility that subjects are universally implement an

extended and generalized form of ADA.

The remainder of this paper is organized as follows. Section 2 presents the theoretical

models. Section 3 explains the data. Section 4 presents the procedure of our empirical

strategy, with the testable hypotheses laid out in Section 5. Section 6 and 7 present the

9According to Figure 2 in Bao et al. (2012), the results from HSM suggest that people are more inclined to
use ADA more frequently in negative feedback markets, although its probability is still much smaller than
that of contrarian expectations (CTR). Furthermore, they tend to prefer other learning rules such as strong
trend extrapolation (TRE) in positive feedback markets. It’s worth noting that both CTR and TRE are
different heuristics compared to ADA, where they suggest that the prediction is the last price plus the last
observed price change multiplied by a constant parameter γ (i.e., pet+1 = pt + γ(pt − pt−1), CTR: γ < 0;
TRE: γ > 1).
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results of the study, and Section 8 concludes and limitations of our study, and offers avenues

for future research.

2 Theory

We layout the theoretical models of adaptive expectation rule (ADA), reference-model based

learning (RMBL), and incremental delta-bar-delta algorithm (IDBD) in this section, in a

manner that focusing on highlight the key difference between the three models.10 11

2.1 Adaptive Expectation Rule

The key to the adaptive expectation rule (ADA; Evans and Honkapohja, 2001) is that people

adjust their prediction for the next period by a constant fraction of the prediction error, based

on their last period prediction. In a setting where the task is to predict the price, and with

p∗ denoting the price prediction and p denoting the realized price, ADA can be written as:

p∗t = p∗t−1 + Ḡ(pt−1 − p∗t−1), 0 < Ḡ < 1 (1)

Because Ḡ is a constant number that does not vary with time, when defining ∆Gt+1,t =

Gt+1 −Gt, the hypothesis derived from ADA is hence:

∆Gt+1,t = Ḡ− Ḡ = 0

2.2 Reference Model Based Learning

Reference Model Based Learning (RMBL; Bossaerts, 2018) relaxes the constant Ḡ, because

it says an agent would speed up learning by adjusting G as long as the current prediction

10One may note that we do not consider the popular Bayesian learning. This is because such learning requires
subjects to have full knowledge of the distributions used to generate the target moves Berrada et al. (2024) In
fact, when they do have the full knowledge of the distribution, Bayesian learning can also be approximated
using model-based reinforcement learning. Because subjects typically do not have full knowledge of data
generating process of the asset pricing in LtFEs or in most cases in the real life, we do not consider Bayesian
learning in our study.
11Algorithms implementing Bayesian inference, such as Kalman filter, assume that agents adapt the gain
with the prior model, such that less precise expectations at the onset of that trial lead to greater updating
towards the most recent outcome. Meanwhile, they also assume a Gaussian random process of the mean
outcome varying over time (Jepma et al., 2020). In contrast, algorithms like IDBD or RMBL are more
generic. They not only relax the Gaussian assumption in Bayesian learning but also check the direction of
adaptation using the auto-correlation of the prediction error, as elaborated in Section 2.3.

6



error is larger than the error anticipated from his reference model, or his maximum allowable

error. In other words, G ̸= Ḡ, and it is possible that Gt ̸= Gt+1.

Denote Z as the squared forecast error from the reference model (RM; e.g., a Kalman

filter)12, and et as the prediction error, where et = pt − p∗t , the agent in RMBL is essentially

finding a G that minimizes the absolute difference between (et)
2 and Z:

min
G

Ω2
t only if Ωt = (et)

2 − Z > 0 (2)

Solving the problem13 by finding the first-order conditions for optimality, the RMBL can be

written as:

p∗t = p∗t−1 +Gt[pt−1 − p∗t−1], where 4Ωtetet−1 = 0.

The hypothesis derived from RMBL is hence: When Ωt < 0, so that the realized forecast

error is smaller than expected in RM, the agent would not need to adjust G, and hence

Gt+1 = Gt. Similarly, when Ωt = 0, so that the realized forecast error is the same as

expected in RM, G is already set to be at optimality as 4Ωtetet−1 = 0, and hence Gt+1 = Gt.

In either case, the agent would remain at the current speed of learning and would not adjust

G.

∆Gt+1,t = 0 when Ωt ≤ 0.

By contrast, when Ωt > 0, G needs to be adjusted and learning needs to be sped up, so that

etet−1 = 0 in the next period, in order to fulfill the optimality.

If etet−1 > 0, it means that Gt is too timid, which results in an under-prediction followed

by an under-prediction, or an over-prediction followed by an over-prediction. Either way, Gt

needs to be set to be more aggressive in the next period so that etet−1 = 0:

∆Gt+1,t > 0 when Ωt ≤ 0 and etet−1 > 0.

If etet−1 < 0, it means that Gt is too aggressive, which results in an under-prediction followed

by an over-prediction, or an over-prediction followed by an under-prediction. Either way, Gt

12As discussed in the introduction, Z may not be the prediction error from a specific reference model. In fact,
subjects may appoint different reference models, and therefore result in different Z for different subjects. As
a result, Z can instead be interpreted as a “maximum allowable error” one can tolerate before speeding up
learning by adjusting the adaptive coefficient.
13For Ωt = (et)

2 − Z and et = pt − p∗t−1 = pt − p∗t−1 −Get−1, the first-order derivative is:

dΩ2
t

dG
=

dΩ2
t

dΩt
· dΩt

de2t
· de

2
t

det
· det
dG

= 2Ωt · 2et · et−1 = 4Ωtetet−1.
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needs to be set to be less aggressive in the next period so that etet−1 = 0:

∆Gt+1,t < 0 when Ωt ≤ 0 and etet−1 < 0.

2.3 Incremental Delta-Bar-Delta Algorithm

Compared to RMBL user, the counterpart user that do not satisfice is called a user of

incremental delta-bar-delta algorithm (IDBD; Sutton; 1992).

Specifically, IDBD relies on autocorrelation of prediction errors to adapt the estimated

binary learning speed. It suggests that as long as the prediction error is not zero, the agent

would speed up (slow down) adaption to estimated binary learning speed when autocorrel-

ation of the prediction error is positive (negative).

Intuitively, this agent would speed up learning when the current step is positively correl-

ated with past steps, indicating that the past steps should have been larger. By contrast,

if the current step is negatively correlated with past steps, it indicates that the past steps

were too large.; And because the algorithm is overshooting the best weight values, this agent

should re-correct in the opposite direction and hence slow down learning.

Practically, by setting the squared error from the reference model Z in RMBL as zero,

one gets a learning function that is same as IDBD:

min
G

(Ωt)
2 if Ωt = (et)

2 ̸= 0, given Z = 0 (3) (3)

so that:

∆Gt+1,t = 0 when Ωt = (et)
2 = 0

∆Gt+1,t > 0 when Ωt = (et)
2 ̸= 0 and etet−1 > 0

∆Gt+1,t < 0 when Ωt = (et)
2 ̸= 0 and etet−1 < 0

3 Data

To facilitate a clean test of whether subjects implement the learning rules, the experimental

environment should enable subjects to be exposed to the history of realized prices and

predictions. Meanwhile, they should also be incentivized to submit an accurate price rather

than being incentivized to strategize.
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Dataset. Learning-to-Forecast Experiments (LtFEs) fulfills the requirement as stated above.

In our study, we utilize the prediction data and the realized value in LtFEs to calculate G

in Equation 1 and find out which learning model subjects are using while making the pre-

dictions. This is in contrast to the analysis in LtFEs, which usually focuses on the data of

the realized value instead of individual’s prediction.

Our dataset contains five set LtFEs experimental data (Bao et al., 2012; 2013; 2017; Bao

and Hommes, 2019; Bao et al., 2024) to test the predictions of the models. The related

summary on the five studies can be found in Table A.1 - A.4.

We are aware that the history of LtFEs can be traced back to Marimon and Sunder (1993)

and has been used as a setup to study whether people can learn the fundamental value of

assets in various markets, so it is impossible to include all of them in the dataset. Nonetheless,

the experimental results we include are generally recent and contain rich observations of

41,490 predictions from 801 subjects.

Learning to Forecast Experiment. We describe the setting and typical results from

LtFEs that are related to this study. They are largely adapted from Bao et al. (2021).

A baseline LtFE is usually a market experiment containing 6-10 subjects in each market,

spanning across 40-65 consecutive periods. In each market, the subjects play the role of

professional forecasters instead of trader, where their only task is to submit their expectation

on the economic variable, most commonly price. They are incentivized to make their best

forecasts on these economic variables, because their payoff function is either a quadradic loss

function of their prediction error, or a function where prediction error is in the denominator.

The advantage of LtFEs compared to other more common market like double auctions

that it provides the clean result on price prediction. Not only the payoff function incentives

subjects to submit their best price prediction that are closer to the realized price. The direct

price belief in LtFEs also avoid “testing joint hypothesis’ problem that would happen in a

traditional market where people submit quantity decision. Specifically, it is possible that

subjects are able to predict the price accurately but fail to transform the price information

to the optimal trading quantity.

A typical user interface can be found in Figure B.1. When making the prediction on the

economic value, subjects have full access to the full history of prediction and realization of the

economic value. They do not know the data generating process (DGP) of this economic value,

just as most market participates do not know the DGP of stock price. However, they do know
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the value of the variables that determines the realized value, except for others’ predictions.

For example, the realized price of a risky asset depends on its dividend, the risk-free interest

rate, and the aggregative expectation on the price of this risky asset. But subjects would not

have information on other people’s prediction, so that it prevents the possibility of subjects’

strategic behavior. In other words, they are playing with “the market” because none of

the subject has larger market power to affect the realized value, as the realized value is the

function of the average prediction of all subjects in the market.

The LtFEs are designed to mainly look at whether people can learn and play the funda-

mental value of the asset, when do not start from it and do not have the knowledge about

the specification of the DGP of the economy.

There are mainly two types of LtFEs: positive and negative feedback market. The asset

markets are generally considered as positive feedback market because the realized market

price is positively correlation of individual’s price expectation. By contrast, a supply-driven

cobweb market with a production lag is a typical negative feedback market. Specifically, a

higher price expectation leads to an increase a production and hence a decreased realized

market price.

The typical result from LtFEs is that there is usually a rapid convergence to the funda-

mental value of the asset when it is a negative feedback market, while a persistent bubbles

and crashes if it is a positive feedback market. The recent experimental evidence suggest

that these typical results are robust to size of the experimental market, quantity and return

prediction, as well as time horizon.

The example of a typical LtFE instruction Bao et al. (2024) can be found in Appendix

C.

4 Methods

While LtFEs are almost suited to test the models, they do not contain information on Z,

i.e., the threshold of maximum prediction error that the agent would endure before speeding

up the learning by adjusting G. Meanwhile, it is highly possible that Z is heterogeneous

among subjects, making it inaccurate to compare the speed of learning between the two

samples divided by the ad-hoc assigned threshold. In response, we find the alternatives by

using continuous and discrete analysis, which will be discussed in the following sections.

Another modification we make to the model is replacing squared prediction error with
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absolute prediction error. This is because the squared error can be very large (e.g., up to a

maximum of 648,073 in Model 6), making it difficult to interpret the coefficient using squared

prediction error.

Note that because existing models only predict on the estimated binary learning speed,

denoted as Yi,t i.e., the incidence where there is an increment of adaptive response with

regards to positive correlation of the error term; the following elaboration focus on binary

learning speed, that is analysed from both continuous and discrete perspective. Then, only in

Section 7, we will extend our analysis to look at estimated continuous learning speed, denoted

as ∆Gi,t, i.e., the magnitude of adaptive response with regard to positive correlation of the

error term, that are not predicted any models. And again, the estimated continuous learning

speed will be investigated from continuous and discrete perspective.

4.1 Continuous Analysis

A continuous analysis allows us to observe whether the probability of adjusting G in the

right direction — raise (reduce) G in the next period when the absolute prediction error in

this and previous period are positively (negatively) correlated — increase when the absolute

prediction error experienced in this period is larger.

We run subject level fixed-effect logit regression, where each unit of observation is a

decision made by a subject i at period t.

Yi,t+1,t = βcEi,t + γcRi,t,t−1 + δc(Ei,t ×Ri,t,t−1) + ϵi,t (4)

The dependent variable Yi,t is binary – it equals to 1 if at period t, subject i increases G

in period t+ 1, in other words ∆Gi,t+1,t > 0, where ∆Gi,t+1,t = Gi,t+1 −Gt, Gi,t =
p∗t−p∗t−1

pt−1−p∗t−1
.

p∗ is the prediction and p is the realized price at the corresponding period; and equals to 0

if subject i reduces G in period t+ 1, so that ∆Gi,t+1,t < 0.

Ei,t denotes the absolute prediction error subject i incurs at period t, i.e., |ei,t|, where
ei,t = pi,t − p∗i,t.

Ri,t,t−1 denotes the indicator variable. It equals to 1 if the prediction error in period t

and t − 1 subject i incurs is positively correlated, i.e., Cov(ei,t, ei,t−1) = ei,tei,t−1 > 0; but

equals to 0 if it is smaller than 0, i.e., Cov(ei,t, ei,t−1) < 0.
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4.2 Discrete Analysis

We further conduct the discrete analysis as follows. Specifically, we split the sample using

median of the prediction error for each subject in each treatment.

Yi,t+1,t = βdSEi,t + γdRi,t,t−1 + δd(SEi,t ×Ri,t,t−1) + ϵi,t (5)

Equation 5 is identical to Equation 4, except that we replace Ei,t into SEi,t.

SEi,t equals to 1 if at period t, Ei,t is smaller than the median of Ei in a treatment and

equals to 0 otherwise.

In turn, a δd < 0 would suggest support for RMBL because it indicates that a subject

is less likely to increase G with regards to a positively correlated prediction error when

experiencing an absolute error that is smaller than his individual median.

One may argue that Z in the RMBL models is the threshold of the maximum allowable

absolute prediction error. Therefore, in theory, it should be quite small, and one should

use a smaller percentile, e.g., 10th percentile, instead of the 50th percentile. While it is

theoretically sound, using a lower percentile as a cutoff creates the problem of unequal

sample size between the larger-than-median sample and smaller-than-median sample. The

smaller sample size in the smaller-than-median sample, when a lower percentile is set, will

tend to favor the hypothesis of RMBL. Specifically, when subjects are less likely to increase

G with regards to a positively correlated prediction error when the prediction error is smaller

than the median, we expect to see a weaker coefficient
dYi,t+1,t

dRi,t,t−1
in the smaller-than-median.

Similarly, the choice of median over the mean value not only helps mitigate the outliers

but also creates a balanced sample size that is critical to our analysis as discussed.

A discrete analysis can serve as a robustness check; but also, as it will be discussed in

Section 5.2, it provides clues about where Z may lie in each experiment and whether Z is

unique or heterogeneous with respect to various experimental settings.

5 Testable Hypotheses

The testable hypotheses are summarized in Table 1, and they are validated in the rest of the

section. A coefficient is said to be positive if it shows a positive sign, and with a significance

level that is at least 5% level. By contrast, a coefficient with a significant that is larger than
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5% level is said to be not statistically different from zero.

Table 1. Testable Hypotheses

Continuous Discrete

RMBL H1: δc > 0 H1: δd < 0
H2: γc ≥ 0 H2: γd > 0

H3: γd + δd = 0 if Zi = Med(Ei,t);
γd + δd > 0 if Zi < Med(Ei,t);

IDBD H1: δc = 0 H1: δd = 0
H2: γc > 0 H2: γd > 0

ADA H1: 0 <
d(p∗i,t−p∗i,t−1)

d(pi,t−1−p∗i,t−1)
< 1 H1: 0 <

d(p∗i,t−p∗i,t−1)

d(pi,t−1−p∗i,t−1)
< 1

H2: δc = 0 H2: δd = 0
H3: γc = 0 H3: γd = 0

5.1 User of Reference Model Based Learning

In a continuous setting, we call the subjects in a market as RMBL users in period t — if he is

more likely to increase (decrease) G at period t+ 1 with regards to a positively (negatively)

correlated prediction error in period t and t−1, when he experiences a larger absolute period

error in period t.
d2Yi,t+1,t

dRi,t,t−1 dEi,t

= δc > 0 (6)

Further, because the satisficing rule says that
dYi,t+1,t

dRi,t,t−1
= 0 when Ei,t ≤ Zi, but greater than 0

if otherwise. Therefore, we should see a positive correlation when aggregating all the sample.

dYi,t+1,t

dRi,t,t−1

= γc + δcEi,t ≥ 0 (7)

And hence, we conclude that the subjects in an experiment can be categorized as a RMBL

using continuous setting if δc > 0, γc ≥ 0.

In the discrete setting, the agent is a RMBL user in period t if he is more likely to increase

(decrease) G at period t + 1 with regards to a positively (negatively) correlated prediction

error in period t and t−1, when he experiences a larger-than-his-individual-median absolute
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prediction error in period t.
d2Yi,t+1,t

dRi,t,t−1 dSEi,t

= δd < 0 (8)

Further, the satisficing rule suggests that
dYi,t+1,t

dRi,t,t−1
is larger when SEi,t = 0:

dYi,t+1,t

dRi,t,t−1

= γd + δd SEi,t > 0 when SEi,t = 0 (9)

dYi,t+1,t

dRi,t,t−1

= γd + δd SEi,t ≥ 0 when SEi,t = 1 (10)

We get γd > 0 and δd < 0 from Equation 8 and 9.

By contrast, it is a bit trickier on the solution of Equation 10. Specifically, whether

γd+δd is greater than or equal to 0 depends on the location of Z with regards to the median

of the absolute prediction error.

When Zi is at the median of Ei,t, then we get a clean result that
dYi,t+1,t

dRi,t,t−1
= 0 when

SEi,t = 1, so that γd + δd = 0.

But if Zi is much smaller than Ei,t, then we would still observe a positive correlation

between Yi,t and Ri,t,t−1 when SEi,t = 1, so that γd + δd > 0.

5.2 User of Incremental Delta-Bar-Delta Algorithm

IDBD suggests that its user increases (decreases) G at period t+1 with regards to a positively

(negatively) correlated prediction error in period t and t − 1 at a constant rate even if he

encounters different absolute prediction errors Ei,t — so long as the absolute prediction error

in period t is not zero, i.e., Ei,t ̸= 0.

Our dataset as well as Equation 4 and 5 are already fit to test whether the user of IDBD

for two reasons, although the two equations do not seem to identify Ei,t = 0.

First, Ei,t = 0 is in theory a rare case due to the random error terms that are implemented

in the Data Generating Process (DGP) in Learning-to-Forecast Experiments (LtFEs). In

other words, even if subjects have learned the fundamental value of the asset and submit it

as the prediction in each period, they would still encounter a nonzero absolute prediction

error. The experimental results support this hypothesis, where Ei,t = 0 only accounts for

0.2

Second and more importantly, the incidence of Ei,t = 0 is already excluded from the
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observations when analyzing Equation 4 and 5. This is because Ei,t = 0 would result in a

zero correlation between this and the last period observation, and hence a missing value of

Ri,t,t−1.

Therefore, it is safe to say that the condition for a IDBD user is just that of RMBL but

removing the satisficing condition. Specifically,

In the continuous setting:
d2Yi,t+1,t

dRi,t,t−1dEi,t

= δc = 0 (11)

and
dYi,t+1,t

dRi,t,t−1

= γc + δcEi,t > 0 when Ei,t ̸= 0 (12)

so that δc = 0 and γc > 0 would be the condition for a IDBD user.

In the discrete setting:
d2Yi,t+1,t

dRi,t,t−1dSEi,t

= δd = 0 (13)

and
dYi,t+1,t

dRi,t,t−1

= γd + δdSEi,t > 0, ∀SEi,t when Ei,t ̸= 0 (14)

so that δd = 0 and γd > 0 would be the condition for a IDBD user.

5.3 User of Adaptive Expectation Rule

The sole condition for the users in an experiment to be classified as ADA is a constant G

between 0 and 1, so that:

0 < Gi,t =
p∗i,t − p∗i,t−1

pi,t−1 − p∗i,t−1

< 1 (15)

In other words, an ADA user adjusts G at period t+1 neither with regards to the correlation

of prediction error in period t and t−1, nor with regards to a change in the absolute prediction

error in period t. It is therefore, equivalently to say that ADA would result in zero coefficients

in our estimations:

In the continuous setting:
d2Yi,t+1,t

dRi,t,t−1dEi,t

= δc = 0 (16)

and
dYi,t+1,t

dRi,t,t−1

= γc + δcEi,t = 0, ∀Ei,t (17)
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so that δc = 0 and γc = 0 would be the condition for an ADA user.

In the discrete setting:
d2Yi,t+1,t

dRi,t,t−1dSEi,t

= δd = 0 (18)

and
dYi,t+1,t

dRi,t,t−1

= γd + δdSEi,t = 0, ∀SEi,t (19)

so that δd = 0 and γd = 0 would be the condition for an ADA user.

6 Main Results

This section tests the prediction from ADA, IDBD, and RMBL, where the hypotheses that

are used to distinguish which learning methods subjects in each experiment are using are

tabulated in Table 1. The results are tabulated in Table A.5 - A.8.

6.1 Satisficing in Learning

Result 1: All the experiments in our dataset show signs of satisficing in at least one of the

discrete or continuous analyses. Meanwhile, IDBD could also provide explanatory power for

3 out of the total of 18 experiments.

Table A.5 and Table A.6 present our main logit regression analysis to test the hypotheses

in Table 1. In general, all the experiments in our dataset can be concluded as RMBL users

through either discrete or continuous analysis.

Subjects in most experiments can be classified as RMBL users by both continuous and

discrete analysis because they all display δc > 0, γc ≥ 0 in continuous analysis, and δd < 0,

γd > 0 in discrete analysis, where they are statistically significant at least at the 5% level.

Specifically, we see a δc ranging from 0.01 to 1.42, indicating that when the absolute error

term is one unit larger, the incidence where there is an increment of adaptive response with

regards to positive correlation of the error term is 1.01 (i.e., e0.01) to 4.14 times as likely to

occur. Similarly, we see a δd ranging from -0.75 to -1.92, suggesting when the absolute error

term is above the individual median, the incidence where there is an increment of adaptive

response with regards to positive correlation of the error term is 2.11 to 6.82 times as likely

to occur. Further, a |δd| > |δc| is consistent with the average of the median error to be 4.74,
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as |δd| > |δc| signals that the absolute value of the individual median error is mostly larger

than one unit.

The exceptions are Model 2 in discrete analysis and Models 14 and 15 in continuous

analysis, where their coefficient indicates subjects in these experiments can also be classified

as IDBD users (i.e., δd = 0 and γd > 0, or δc = 0 and γc > 0).

As none of the models find a zero value δ and γ, we conclude that ADA does not explain

as well as RMBL and IDBD in any of the models.

Result 2: The observation where RMBL explains well on the learning behaviour in all the

experiments are robust in split-sample comparison and cross-study analysis.

We further conduct the robustness check by splitting the above Ei median sample from

below Ei median, and the results support the finding where RMBL explains well of the

learning behavior.

The analyses are reported in Table A.7 and A.8. Specifically, in all of the models, we find

a smaller and weaker coefficient of
dYi,t+1,t

dRi,t,t−1
in the below Ei median sample compared to that

of the above Ei median sample. Specifically, the coefficient of
dYi,t+1,t

dRi,t,t−1
ranges from 0 to 2.24

when the absolute error is smaller than subject level median, suggesting that a positively

correlated prediction error makes an increment in the adaptive response 1 to 9.4 times as

likely to happen. By contrast, the coefficient of
dYi,t+1,t

dRi,t,t−1
ranges from 1.12 to 4.31 when the

absolute error is larger than or equal to subject level median, suggesting that a positively

correlated prediction error makes an increment in the adaptive response 3.06 to 74.44 times

as likely to happen.

Interestingly, in the below Ei median, the coefficient of
dYi,t+1,t

dRi,t,t−1
in the positive feedback

market is still statistically significant and larger than 0, while those in the negative feedback

market display a coefficient that is no longer statistically significant in 5 out of the 6 models.

By contrast, in the above Ei median sample, all the coefficients of
dYi,t+1,t

dRi,t,t−1
are greater than

0 and with at least a 5% significance level. This observation show some signals that the

estimated continuous learning speed
d∆Gi,t+1,t

dRi,t,t−1
(that will be discussed in Section 7) is more

chaotic in smaller-than-median PE sample in a negative feedback market.

Finally, we plot the coefficient of
dYi,t+1,t

dRi,t,t−1
against the mean Ei each of the models in Table

A.7 and A.8. As illustrated by Figure 1, the coefficient is clustered at a lower level when

its absolute prediction error is smaller than individual mean, compared to the sample where

the absolute prediction error is greater than individual mean.
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Figure 1. Coefficients of
dY(i,t+1,t)

dR(i,t,t−1)
with regards to absolute prediction error in 18

experiments, separated by its absolute prediction error with regards to individual median.
The detailed regression coefficients can be found in Table A.7 and A.8

.
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6.2 Heterogeneity of Maximum Allowable Prediction Error

Result 3: Z is not a universal constant and display heterogeneity across the experiment.

Our theoretical model suggests that among the experiments where its user can be clas-

sified as RMBL user, Zi is right at the median Ei when γd + δd = 0, but much smaller

than median Ei when γd + δd > 0. The estimates on the linear combinations of the two

parameters for each model are reported in the last row of Table A.5 and A.6. We find that

only in Models 14, 16, 17, and 18, Zi is at the median Ei, and Zi are much smaller than at

the median Ei in the rest of the models.

To find out whether Zi is a universal constant, we run a regression comparing the median

Ei in the four models. The result is reported in Table 2. We find a significant difference in

the median Zi across the four, which are statistically significant at the 1% level.

Table 2. Comparison of Median Ei in Models where γd + δd = 0

Median Ei

(1)

Model 16 (LtFE) = 1 0.67***
(0.06)

Model 17 (LtFE + LtOE Both) = 1 2.06***
(0.15)

Model 18 (LtFE + LtOE Either) = 1 1.50***
(0.08)

Constant (Model 14 (REE = 41, 21 ≤ t ≤ 43) = 0) 0.51***
(0.03)

Observations 150
R-squared 0.70

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

7 Extended Investigation on Estimated Continuous learn-

ing Speed

In this section, we repeat the analysis but replace the variable of interest into estimated

continuous learning speed instead of estimated binary learning speed, i.e., replace
dYi,t+1,t

dRi,t,t−1

with
d∆Gi,t+1,t

dRi,t,t−1
. Note that neither RMBL, IDBD, or ADA predicts anything on

d∆Gi,t+1,t

dRi,t,t−1
.
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Therefore, this section only serves as an extended investigation beyond the main results.

The results are tabulated in Table A.9 - A.12.

Result 4: The results on estimated binary learning speed in RMBL can be extended to

estimated continuous learning speed. Specifically, when conducting analyses that are robust

to outliers, we find evidence that the estimated continuous learning speed—the increment

in the magnitude of adaptive response with regard to the positive correlation of the error

term—also increases when there is a larger absolute prediction error.

7.1 Procedure

The previous results suggest that the estimated binary learning speed (i.e.,
dYi,t+1,t

dRi,t,t−1
, where

Yi,t+1,t is binary, equaling 1 when G increases but equaling 0 when G decreases) is a positive

function of the absolute prediction error that also exhibits satisficing. This observation is

consistent with the RMBL prediction from Bossaerts (2018) and is laid out in Section 2 of

this paper. However, it does not tell us whether subjects increase G to a larger extent in

magnitude with regards to a positive correlation when the error is larger, which Bossaerts

(2018) does not discuss.

In response, we repeat our analysis but replace the dependent variable into ∆G(i,t+1,t),

i.e.,

∆Gi,t+1,t = βcEi,t + γcRi,t,t−1 + δc(Ei,t ×Ri,t,t−1) + ϵi,t (20)

and

∆Gi,t+1,t = βdSEi,t + γdRi,t,t−1 + δd(SEi,t ×Ri,t,t−1) + ϵi,t (21)

The criteria for classifying users in experiments as RMBL, RL, or ADA are the same as in

Table 1, with the only difference being the interpretation of the results. Further, we refer
∆G(i,t+1,t)

dR(i,t,t−1)
as the estimated continuous learning speed.

7.2 Result

OLS. The results in Table A.9 and Table A.10 suggests that while subjects in more than

half of the experiments can still be categorized as RMBL users from either a continuous or

discrete perspective based on the assessment of the coefficients of γ and δ, there are more

inconsistent results from discrete and continuous analysis compared to the results in the

estimated binary learning speed.
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But instead of concluding that ADA and IDBD could explain 40% of our experiments,

these results should be interpreted with caution. If subjects truly adhere to the use of ADA

or IDBD models, the analyses using estimated binary learning speeds should yield the same

result. Since analyses using estimated binary learning speeds suggest that subjects in all

experiments are RMBL users, one can only interpret the results in Table A.9 and Table

A.10 as subjects adjusting the estimated continuous learning speed in a chaotic manner with

respect to the error. In other words, estimated continuous learning speed does not provide

insightful observations as those from the estimated binary learning speed.

The split-sample illustration in Figure B.2, along with the detailed split-sample coefficient

of
∆G(i,t+1,t)

dR(i,t,t−1)
in Table A.11 and Table A.12, is consistent with the doubts regarding the results.

As shown in Figure B.2, it is very hard to observe a clean pattern since most coefficients in B.2

have a large standard error. Specifically, there is no clear cutoff on the coefficient of
∆G(i,t+1,t)

dR(i,t,t−1)

that separates the sample into small and large absolute prediction errors. Instead, we even

observe multiple red dots lying lower than the blue dots, indicating that the smaller absolute

error would lead subjects to speed up learning to a larger extent. As a robustness check, we

plot another graph similar to Figure B.2 but only keep the sample where
dY(i,t+1,t)

dR(i,t,t−1)
> 0. The

graph can be found in Figure B.3, and it shows similar chaotic pattern as in Figure B.2.

Nevertheless, except for one observation, all the other coefficients of
∆G(i,t+1,t)

dR(i,t,t−1)
are greater

than or equal to zero, indicating that subjects do increase G with regards to the positively

correlated prediction error. And the only exception, on the other hand, is shown to be not

significantly different from zero, as indicated in Table A.12.

M-estimator. But before concluding that estimated continuous learning speed does not

provide insightful results, one interesting thing to note is the presence of very large standard

errors in some of the plots of the coefficients in Figure B.2. Specifically, it shows that the

increment of adaptive response with regard to a positively correlated error could be up to

30 units on average (with a standard error of 20 units) when the absolute prediction error

is only 4 units. The very large magnitude implies the existence of outliers, which could

potentially pollute the results. Therefore, we resort to the remedy of conducting robust

regression, specifically using M-estimators (Huber, 1973).

The results from M-estimators show a sharp difference from OLS and are consistent with

our findings on estimated continuous learning speed. Overall, they suggest that our findings

on the estimated binary learning speed in RMBL can be extended to estimated continuous

learning speed.
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When pooling all data, both continuous analysis (δc = 0.05, p < 0.01) and discrete

analysis (δd = −0.22, p < 0.05) provide evidence supporting RMBL. Specifically, the two

coefficients imply that when the absolute prediction error is one unit larger, the increment

in G with regard to the positively correlated error is 0.05 higher; and similarly, when the

error is larger than the median, the increment in G with regard to the positively correlated

error is 0.22 units higher — compared to if the error is smaller than the median.

When splitting the sample according to the experiment, as shown in Table A.13 and Table

A.14, we find that subjects in 15 out of the 18 experiments can be explained by the use of

RMBL from at least one of the analyses. Meanwhile, the evidence for RMBL, and hence

satisficing, is strong in all analyses, except for the discrete analysis in the positive-feedback

market.

The lack of explanatory power in the interaction term in the discrete analysis in the

positive feedback market may be due to the limited variation in the explanatory variable in

the discrete analysis. Specifically, the explanatory variable is an indicator variable that varies

only between 0 and 1, while there is a much larger variability (p < 0.01) in the absolute ∆G

in the positive feedback market (σ(|∆Gpositive|) = 94.20) compared to that in the negative

feedback market (σ(|∆Gnegative|) = 62.95). In turn, because the variation in explanatory

power is much smaller than the large variation in the dependent variable in the positive

feedback market, it leads to weaker power in the interaction term.

The results from split-sample analyses (Table A.15 and Table A.16) and its visualization

in Figure B.4 support this conjecture. In the tables, we find that only in half of the exper-

iments, the estimated continuous learning speed is larger in the sample when the error is

larger than the median, even when conducting analyses that are robust to outliers in each of

the experiments. As shown in the figure, the outliers from the M-estimator are still prevalent

in the discrete analysis, where the blue dots for small prediction errors lie higher than the

red dots, showing a large standard error. If we ignore them and only consider the coefficients

with a small standard error, we can observe a clear pattern where the blue dots lie below the

red dots, indicating that the estimated continuous learning speed is larger when the absolute

prediction error is larger than the median.

8 Concluding Remarks and Future Research

Contribution. The existing literature finds the dominant explanatory power of ADA in

people’s forecasting behavior in the experimental financial market. RMBL (Bossaerts, 2018)
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can be considered a generalized ADA: it hypothesizes that people adjust how they adapt

to past prediction errors with regards to the correlation of the error term; meanwhile, they

exhibit satisficing behavior, where they would only do so when the most recent prediction

error is larger than their maximum allowable threshold.

While there are some neural evidence suggesting that subjects implement RMBL in

decision-making, their sample size is small as data collection using fMRI is rather complic-

ated. In contrast, our study utilizes the rich observations of 41,490 predictions from 801

subjects in 18 economic experiments, where subjects are asked to play the role of financial

forecaster, and their only task is to submit a point prediction on the price in the next period

as accurately as possible.

We provide experimental evidence that RMBL, as a generalized ADA, best explains

the learning behavior when human subjects are tasked as forecasters in a financial market.

Specifically, we find that in most of the experiments, the estimated binary learning speed —

whether there is an increment of adaptive response with regards to the positive correlation

of the error term — increases as there is a larger prediction error. Our observation that

people satisfice is consistent with the existing evidence in LtFE where subjects are found

to implement stopping rules and choose to stop learning when the error is small, when

their task is to provide structural estimates of the price in the price (Bao et al., 2022).

Furthermore, our results suggest that IDBD could also provide explanations for 3 out of

the total 18 experiments in either discrete or continuous analyses. In contrast, there is no

evidence showing that simple ADA fits best among the three learning models in any of the

experiments. Furthermore, we also find supporting evidence suggesting that the principle

of RMBL, particularly regarding the estimated binary learning speed, could be extended

to estimated continuous learning speed. Specifically, when conducting the analyses that is

robust to outlier, we also find evidence that the estimated continuous learning speed—the

increment in the magnitude of adaptive response with regards to positive correlation of the

error term—also increases when there is a larger absolute prediction error.

Limitations and future research. While our paper establishes correlational findings

indicating that all experiments in the dataset can be explained by RMBL, further studies

are necessary for robustness checks.

The possible approach is to conduct a causal study. One way is to manipulate and vary the

median prediction error, so that we can observe whether subjects accelerate learning when the

prediction error exceeds the exogenously given threshold. Another potential way is to directly
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ask subjects about threshold information during the experiment while participants make

predictions, or to inquire in the post-experiment questionnaire about the exact strategies they

use for forecasting. Additionally, it is interesting to conduct a more comprehensive study

like Sonnemans et al. (2004) that requires subjects to submit algorithms for price forecasts

and delegates the calculation and implementation to the robots that subjects design.

Meanwhile, our results do not provide insights into the exact location of the maximum

allowable error; they only suggest heterogeneity in these locations across experiments. One

possibility is that instead of a maximum allowable error, subjects in the experiment imple-

ment a minimum allowable profit. We were unable to test this hypothesis because profit

calculations vary across experiments. An interesting avenue for future research might be to

design a tailored experiment and investigate whether the minimum allowable profit serves

as the criterion subjects use to adjust their learning strategies.
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Appendix A: Additional Tables 

Table A.1: Summary of the Dataset Used: Positive Feedback Market  
 

Study / Abbrev Description Treatment Summary Statistics Model Realized Price Dynamics 
      
Bao et al. 
(2012), JEDC / 
LtFE in Positive 
and Negative 
Feedback 
Market 
 
 
 

LtFEs investigate the converge behaviour in positive and feedback 
market. They find that negative feedback market converge quickly 
while positive feedback market do not and show underreaction to 
short run and overreaction in the long run.  

- Market size = 6 
- # Subject = 48 in each treatment  
- Convergence to REE: û 
- Within-subject design, from (1) to (2) to (3) 

REE = 56, 
1 ≤ = ≤ 20 

Var(Price): 14.6 (1) 

 

E(|PE|): 0.973 
#Obs: 960 

 
REE = 41, 
21 ≤ = ≤ 43 

Var(Price): 47.7 (2) 
E(|PE|): 0.573 

#Obs: 1104 
 

REE = 62, 
44≤ = ≤ 65 

Var(Price): 67.1 (3) 
E(|PE|): 0.744 

#Obs: 1056 
 

Bao et 
al.(2024), JEBO 
/ Theory of 
Mind (ToM) 

LtFEs investigate whether market become more stable, resulting in 
lower volatility and fewer price bubbles when it is filled with 
people high theory of mind (ToM) capability, compared with the 
counterpart that filled with low ToM subjects. No significant 
differences are found.  

-  Market size = 6 
- # Subject = 96 in each treatment  
- # Obs = 4800 in each treatment 
- Convergence to REE: û 
- Between- subject  

High ToM  Var(Price): 9347.0 (4) 

 

E(|PE|): 13.56 
  

Medium 
High 

Var(Price): 21963.2 (5) 
E(|PE|): 16.25 

  
Medium 
Low 

Var(Price): 10444.8 (6) 
E(|PE|): 16.04 

  
Low ToM Var(Price): 33306.2 (7) 

E(|PE|): 26.80 
  

Note: In the column of realized price dynamics, y-axis denotes the average price while x-axis represents the period. There are 70 periods in Bao et al. (2012) while only 50 periods in Bao et 
al. (2024). In both studies, the dotted line are the fundamental value or rational expectation equilibrium (REE) of the price, while the solid lines are the realized market price (which is a 
function of all subjects prediction on the price). As the solid line is still far away from the dotted line, it is concluded that the price does not converge to REE at the end of the experiment. The 
quantitative approach of measuring whether the price converges using relative and absolute deviation can be found in respective original studies. PE stands for prediction error, i.e., PE = 
!! − !!∗.  
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Table A.2. Summary of the Dataset Used: Positive Feedback Market, contd.
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Table A.2: Summary of the Dataset Used: Positive Feedback Market, contd. 
 

Study / 
Abbrev 

Description Treatment Summary Statistics Model Realized Price Dynamics 

      
Bao et al. 
(2017), EJ / 
LtFE vs. LtOE 
Positive  

Compare the price dynamics and bubbles formation in asset across three 
treatments: (1) LtFE where subjects submit price only; (2) LtOE where 
subjects choose quantity to buy/sell; (3) perform both tasks, where payoff 
depends on price or quantity decision in equal probability. They find that 
bubble is larger in (2) and (3) compared to (1). 

- Exclude data in (2) because no price prediction 
- Market size = 6 
- # Subject = 48 in each treatment  
- # Obs = 2400 in each treatment 
- Convergence to REE: û 
- Between- subject 

LtFE  Var(Price): 71.3 (8) 

 

 
Left: LtFE in (1); Right: Mixed in (3) 

E(|PE|): 1.267 
  

LtFE + LtOE 
Both  

Var(Price): 1416.8 (9) 
E(|PE|): 7.665 

  

Note: In the column of realized price dynamics, y-axis denotes the average price while x-axis represents the period. There are 50 periods of the game. The dotted black lines are the fundamental 
value or rational expectation equilibrium (REE) of the price or the quantity, while the solid lines are the realized market price or quantity (which is a function of all subjects prediction/decision 
on the price). As the solid line of price prediction in both graph are still far away from the dotted line, it is concluded that the price does not converge to REE at the end of the experiment. The 
quantitative approach of measuring whether the price converges using relative and absolute deviation can be found in respective original studies. PE stands for prediction error, i.e., PE = 
!! − !!∗. 
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Table A.3. Summary of the Dataset Used: Positive Feedback Market, contd.
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Table A.3: Summary of the Dataset Used: Positive Feedback Market, contd. 
 

Study / 
Abbrev 

Description Treatment Summary Statistics Model Realized Price Dynamics 

      
Bao and 
Hommes 
(2019), JEDC / 
Speculator vs. 
Supplier in 
Housing 
Market 

Housing market is a combination of positive feedback market (through 
speculative demand) and negative feedback market (through endogenous 
supply of housing). The study designs an experimental housing market and 
study how the strength of the negative feedback, the price elasticity of 
supply (PES), affect market stability. The result suggests that market 
stabilizes and price converge to REE only when there is strong PES where 
there is elastic housing supply (Treatment H: PES = 0.25), but fail to do so 
when there is no supplier (Treatment N: PES = 0) or when PES is low 
(Treatment L: PES = 0.1).  

- Market size = 6 in N, Market size = 9 in L and H 
- # Subject: Treatment N = 24; Treatment L = 45; Treatment H = 54 
- # Obs: Treatment N = 1200; Treatment L = 2250; Treatment H= 

2700 
- Between-subject 

No Supplier 
(N) 

Var(Price): 11004.0 (10) 

 

 
 

E(|PE|): 11.78 
Converge 

to REE? 
 

û 
 
 

Low PES (L) Var(Price): 265.0 (11) 
E(|PE|): 17.01 

Converge 
to REE? 

 

û 
 

High PES (H) Var(Price): 24.0 (12) 
E(|PE|): 3.386 

Converge 
to REE? 

ü 
 

Note: In the column of realized price dynamics, y-axis denotes the average price while x-axis represents the period. There are 50 periods in total. The black line are the fundamental value or 
rational expectation equilibrium (REE) of the price, while the blue line is the realized market price (which is a function of all subjects prediction on the price). As the solid line in N1 and H1 
is still far away from the black line at the end of the experiment, while stick around the black line in H1, we conclude that only H1 converge to REE. The quantitative approach of measuring 
whether the price converges using relative and absolute deviation can be found in respective original studies. PE stands for prediction error, i.e., PE = !! − !!∗. 
 

 
  

29



Table A.4. Summary of the Dataset Used: Negative Feedback Market 
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Table A.4: Summary of the Dataset Used: Negative Feedback Market  
 

Study / 
Abbrev 

Description Treatment Summary Statistics Model Realized Price Dynamics 

      
Bao et al. 
(2012), JEDC 
/ LtFE in 
Positive and 
Negative 
Feedback 
Market 
 
 
 
 

Same as in Model 1 – 3:  
 
LtFEs investigate the converge behaviour in positive and feedback 
market. They find that negative feedback market converge quickly 
while positive feedback market do not and show underreaction to short 
run and overreaction in the long run.  

- Market size = 6 
- # Subject = 48 in each treatment  
- Convergence to REE: ü 

Within-subject design, from (1) to (2) to (3) 

REE = 56, 
1 ≤ = ≤ 20 

Var(Price): 3.5 (13) 

 

E(|PE|): 2.314 
#Obs: 960 

  
REE = 41, 
21 ≤ = ≤ 43 

Var(Price): 11.7 (14) 
E(|PE|): 3.426 

#Obs: 1104 
 

REE = 62, 
44≤ = ≤ 65 

Var(Price): 21.9 (15) 
E(|PE|): 3.591 

#Obs: 1056 
       
Bao et al. 
(2013), EER / 
LtFE vs. 
LtOE 
Negative 

Consider both forecasting (LtFE) and optimization decisions (LtOE) in 
a negative feedback market (i.e., experimental cobweb economy). The 
treatment include (1) LtFE: price forecasts only; (2) LtOE: quantity 
only; (3) LtFE + LtOE Both; (4) LtFE + LtOE Either, where they are 
paired in teams of 2, where one assigned with LtFE and another 
assigned with LtOE. All treatments converge to REE but at different 
speed. Performance is the best in (1) and worst in (3). 

- Exclude data in (2) because no price prediction 
- Market Size (i.e., number of subjects subject price prediction) 

in each treatment = 6 
- # Valid Subject: LtFE: 24; LtFE+LtOE Both:42; LtFE + LtOE 

Either: 36 
- # Obs: LtFE: 1200; LtFE+LtOE Both:2100; LtFE + LtOE 

Either: 1800 
- Convergence to REE: ü 
- Between- subject 

LtFE  Var(Price): 5.7 (16) 

 

 
 

E(|PE|): 2.465 
  

LtFE + LtOE 
Both  

Var(Price): 56.7 (17) 
E(|PE|): 4.463 

  
LtFE + LtOE 
Either 

Var(Price): 21.4 (18) 
E(|PE|): 3.517 

  

Note: In the column of realized price dynamics, y-axis denotes the average price while x-axis represents the period. There are 50 periods in total. The smooth lines are the fundamental value 
or rational expectation equilibrium (REE) of the price, while the dotted line is the realized market price (which is a function of all subjects prediction on the price). As the smooth line is close 
to the dotted line in all the market, we conclude that price converge to REE. The quantitative approach of measuring whether the price converges using relative and absolute deviation can be 
found in respective original studies. PE stands for prediction error, i.e., PE = !! − !!∗. 
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Table A.5. Yi,t+1,t in Positive Feedback Market
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Table A.5: 	"!,#$%,#in Positive Feedback Market 
 

Study and 
Description 

 LtFE in Positive and Negative 
Feedback Market / Bao et al. (2012), 

JEDC, Positive Feedback Markets 

  Theory of Mind (ToM) / Bao et al 
(2024), JEBO 

  LtFE vs. LtOE 
Positive / Bao et 

al. (2017), EJ 

  Speculator vs. Supplier in 
Housing Market / Bao and 

Hommes (2019), JEDC 

 

Treatment REE = 56, 
1 ≤ = ≤ 20 

REE = 41, 
21 ≤ = ≤ 43 

REE = 62, 
44≤ = ≤ 65 

High-
ToM 

Medium 
High 

Medium 
Low 

Low-
ToM 

LtFE LtFE+LtOE 
Both 

No 
Supplier 

Low PES High PES 

Model  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
 

Panel A: Continuous Analysis  
Positively Correlated 
PE × |PE|, Q, 

1.42*** 0.76*** 0.93*** 0.02*** 0.01*** 0.01*** 0.01*** 0.55*** 0.15*** 0.04*** 0.16*** 0.33*** 
(0.38) (0.25) (0.26) (0.00) (0.00) (0.00) (0.00) (0.11) (0.03) (0.01) (0.03) (0.06) 

             
Positively Correlated 
PE, A, 

0.40* 0.55*** 0.65*** 1.34*** 1.37*** 1.47*** 1.30*** 0.62*** 0.72*** 1.09*** 1.25*** 2.05*** 
(0.21) (0.17) (0.20) (0.07) (0.07) (0.07) (0.07) (0.14) (0.12) (0.18) (0.22) (0.15) 

             
|PE|, *, -0.89*** -0.24* -0.58*** -0.01*** -0.00** -0.00*** -0.00*** -0.27*** -0.14*** -0.01 -0.12*** -0.14** 

(0.33) (0.14) (0.21) (0.00) (0.00) (0.00) (0.00) (0.08) (0.03) (0.01) (0.03) (0.06) 
             
Observations 852 1,053 978 4,558 4,576 4,572 4,551 2,246 2,269 1,138 2,142 2,513 
Number of Subject 48 48 48 96 96 96 96 48 48 24 45 54 
Classification RMBL RMBL RMBL RMBL RMBL RMBL RMBL RMBL RMBL RMBL RMBL RMBL 

             
Panel B: Discrete Analysis  
Positively Correlated 
PE × Small |PE|, Q1 

-1.21*** -0.39 -1.10*** -1.11*** -0.78*** -0.66*** -0.91*** -0.75*** -1.24*** -1.04*** -1.92*** -1.77*** 
(0.30) (0.26) (0.29) (0.13) (0.13) (0.13) (0.13) (0.18) (0.18) (0.30) (0.39) (0.27) 

             
Positively Correlated 
PE, A1 

1.70*** 1.08*** 1.80*** 2.10*** 1.93*** 1.95*** 1.96*** 1.59*** 1.81*** 2.09*** 4.16*** 3.92*** 
(0.23) (0.19) (0.22) (0.10) (0.10) (0.10) (0.10) (0.13) (0.14) (0.24) (0.36) (0.23) 

             
Small |PE|, *1 0.61*** -0.16 0.46** 0.52*** 0.25** 0.28*** 0.38*** 0.21 0.70*** 0.61** 1.18*** 0.84*** 

 (0.22) (0.20) (0.22) (0.11) (0.10) (0.10) (0.10) (0.13) (0.13) (0.26) (0.38) (0.24) 
             

Observations 852 1,053 978 4,558 4,576 4,572 4,551 2,246 2,269 1,138 2,142 2,513 
Number of Subject 48 48 48 96 96 96 96 48 48 24 45 54 
Classification RMBL IDBD RMBL RMBL RMBL RMBL RMBL RMBL RMBL RMBL RMBL RMBL 
Test: A1 + Q1  0.491**  0.692*** 0.989*** 1.145*** 1.295*** 1.045*** 0.840*** 0.568*** 1.054*** 2.240*** 2.144*** 
 (0.2)  (0.19) (0.09) (0.09) (0.09) (0.09) (0.12) (0.12) (0.19) (0.17) (0.14) 
E (Median of ℰ.) 0.391  0.522 5.168 6.201 3.771 12.11 0.919 2.432 5.905 13.90 2.142 
Note:  Logit estimates fit for panel data with subject level fixed effect (except for Model 9 in Panel A where subject level fixed effect model cannot converge, so that a random effect model is 
implemented). PE stands for prediction error, i.e., PE = !! − !!∗. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A.6. Yi,t+1,t in Negative Feedback Market
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Table A.6: "!,#$%,# in Negative Feedback Market 
 

Study and 
Description 

 LtFE in Positive and Negative 
Feedback Market / Bao et al. 

(2012), JEDC, 
Negative Feedback Markets 

  LtFE vs. LtOE Negative / Bao et 
al. (2013), EER 

 

Treatment REE = 56, 
1 ≤ = ≤
20 

REE = 41, 
21 ≤ = ≤ 43 

REE = 62, 
44≤ = ≤ 65 

LtFE LtFE+LtO
E 

Both 

LtFE+LtO
E 

Either 
Model (13) (14) (15) (16) (17) (18) 
       
Panel A: Continuous Analysis 
Positively Correlated 
PE × |PE|, Q, 

0.38*** 0.04* 0.02 0.47*** 0.14*** 0.20*** 
(0.10) (0.02) (0.02) (0.09) (0.02) (0.04) 

       
Positively Correlated 
PE, A, 

0.75*** 1.10*** 1.33*** -0.21 -0.05 0.20 
(0.20) (0.16) (0.17) (0.17) (0.13) (0.14) 

       
|PE|, *, -0.16*** 0.01 -0.01 -0.12*** -0.04*** -0.05*** 
 (0.05) (0.01) (0.01) (0.03) (0.01) (0.02) 
       
Observations 791 918 826 1,087 1,846 1,537 
Number of Subject 48 48 48 24 42 36 
Classification RMBL IDBD IDBD RMBL RMBL RMBL 
       
Panel B: Discrete Analysis 
Positively Correlated 
PE × Small |PE|, Q1 

-1.84*** -1.51*** -1.41*** -1.58*** -1.37*** -1.19*** 
(0.32) (0.29) (0.31) (0.26) (0.19) (0.21) 

       
Positively Correlated 
PE, A1 

2.28*** 1.91*** 2.11*** 1.39*** 1.16*** 1.36*** 
(0.25) (0.21) (0.22) (0.19) (0.14) (0.15) 

       
Small |PE|, *1 1.10*** 0.56*** 0.51*** 0.79*** 0.64*** 0.54*** 
 (0.20) (0.19) (0.20) (0.16) (0.13) (0.14) 
       
Observations 791 918 826 1,087 1,846 1,537 
Number of Subject 48 48 48 24 42 36 
Classification RMBL RMBL RMBL RMBL RMBL RMBL 
Test: A1 + Q1  0.433** 0.401* 0.694*** -0.196 -0.214 0.170 
 (0.22) (0.2) (0.22) (0.17) (0.13) (0.15) 
E (Median of ℰ.) 0.782 0.508 0.489 1.182 2.568 2.006 
Note: Logit estimates fit for panel data with subject level fixed effect PE stands for prediction error, i.e., PE = !! −
!!∗. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A.7. Yi,t+1,t in Positive Feedback Market: Split Sample
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Table A.7: "!,#$%,# in Positive Feedback Market: Split Sample 
 

Study and Description  LtFE in Positive and Negative 
Feedback Market / Bao et al. 

(2012), JEDC, Positive Feedback 
Markets 

  Theory of Mind (ToM) / Bao et al 
(2024), JEBO 

  LtFE vs. LtOE 
Positive / Bao et 

al. (2017), EJ 

  Speculator vs. Supplier in 
Housing Market / Bao and 

Hommes (2019), JEDC 

 

Treatment REE = 56, 
1 ≤ = ≤
20 

REE = 41, 
21 ≤ = ≤ 43 

REE = 62, 
44≤ = ≤
65 

High-
ToM 

Medium 
High 
ToM 

Medium 
Low 
ToM 

Low-
ToM 

LtFE LtFE+LtOE 
Both 

No 
Supplier 

Low 
PES 

High PES 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
 
Panel A: Error Smaller than Subject-Level Median (Small Error = 1) 
Positively Correlated PE 0.50** 0.71*** 0.71*** 1.01*** 1.15*** 1.30*** 1.02*** 0.81*** 0.59*** 1.06*** 2.24*** 2.16*** 

(0.21) (0.19) (0.20) (0.09) (0.09) (0.09) (0.09) (0.12) (0.12) (0.19) (0.17) (0.14) 
             
Observations 433 486 473 2,264 2,275 2,308 2,266 1,152 1,150 573 1,058 1,221 
Number of Subject 48 48 47 96 96 96 96 48 48 24 45 54 
             
Panel B: Error Larger than or Equal to Subject-Level Median (Small Error = 0) 
Positively Correlated PE 1.78*** 1.12*** 1.81*** 2.08*** 1.90*** 1.96*** 1.93*** 1.62*** 1.80*** 2.07*** 4.31*** 3.89*** 

(0.24) (0.20) (0.24) (0.10) (0.10) (0.10) (0.10) (0.14) (0.14) (0.25) (0.38) (0.24) 
             
Observations 419 567 501 2,294 2,301 2,264 2,285 1,094 1,119 565 1,084 1,292 
Number of Subject 48 48 48 96 96 96 96 48 48 24 45 54 
Note: Logit estimates fit for panel data with subject level fixed effect. PE stands for prediction error, i.e., PE = !! − !!∗. *** p<0.01, ** p<0.05, * p<0.1. 

33



Table A.8. Yi,t+1,t in Negative Feedback Market: Split Sample
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Table A.8: "!,#$%,# in Negative Feedback Market: Split Sample 
 
Study and Description  LtFE in Positive and Negative 

Feedback Market / Bao et al. 
(2012), JEDC,  

Negative Feedback Markets  

  LtFE vs. LtOE Negative / 
Bao et al. (2013), EER 

 

Treatment REE = 56, 
1 ≤ = ≤
20 

REE = 41, 
21 ≤ = ≤ 43 

REE = 62, 
44≤ = ≤ 65 

LtFE LtFE+Lt
OE 

Both 

LtFE+LtOE 
Either 

 (13) (14) (15) (16) (17) (18) 
       
Panel A: Error Smaller than Subject-Level Median (Small Error = 1) 
Positively Correlated 
PE 

0.43* 0.39* 0.73*** -0.22 -0.20 0.19 
(0.23) (0.21) (0.22) (0.17) (0.13) (0.15) 

       
Observations 376 383 358 553 902 745 
Number of Subject 43 41 41 24 42 36 
       
Panel B: Error Larger than or Equal to Subject-Level Median (Small Error = 0) 
Positively Correlated 
PE 

2.43*** 1.93*** 2.28*** 1.41*** 1.19*** 1.35*** 
(0.28) (0.22) (0.25) (0.20) (0.14) (0.16) 

       
Observations 401 532 457 534 944 792 
Number of Subject 47 48 48 24 42 36 
Note: Logit estimates fit for panel data with subject level fixed effect. PE stands for prediction error, i.e., PE = 
!! − !!∗. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A.9. ∆Gi,t+1,t in Positive Feedback Market
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Table A.9: #!,#$%,#	in Positive Feedback Market 
 

Study and 
Description 

 LtFE in Positive and Negative 
Feedback Market / Bao et al. (2012), 

JEDC, Positive Feedback Markets 

  Theory of Mind (ToM) / Bao et al 
(2024), JEBO 

  LtFE vs. LtOE 
Positive / Bao et 

al. (2017), EJ 

  Speculator vs. Supplier in 
Housing Market / Bao and 

Hommes (2019), JEDC 

 

Treatment REE = 56, 
1 ≤ = ≤ 20 

REE = 41, 
21 ≤ = ≤ 43 

REE = 62, 
44≤ = ≤ 65 

High-
ToM 

Medium 
High 

Medium 
Low 

Low-
ToM 

LtFE LtFE+LtOE 
Both 

No 
Supplier 

Low PES High PES 

Model  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
 

Panel A: Continuous Analysis  
Positively Correlated 
PE × |PE|, Q, 

7.86** 3.25*** 3.29 1.16** 0.15*** 0.59*** 0.17** 26.77** 0.66*** 3.43*** -0.14 0.14 
(3.65) (0.63) (2.34) (0.49) (0.03) (0.20) (0.07) (12.86) (0.22) (0.30) (0.13) (0.14) 

             
Positively Correlated 
PE, A, 

-0.68 2.93** 5.23 -2.80 10.71*** 4.87 6.01** -25.87* 8.60*** -11.62 8.69*** 5.14*** 
(1.85) (1.37) (3.65) (6.80) (2.30) (3.99) (2.67) (13.94) (3.08) (10.26) (2.64) (0.74) 

             
|PE|, *, -4.85 -1.41** -1.85 -1.01** -0.04* -0.15* -0.04 -26.53** -0.32 0.22 0.10 -0.12 

(3.22) (0.61) (1.95) (0.50) (0.02) (0.08) (0.04) (13.10) (0.22) (0.24) (0.12) (0.12) 
             
Observations 894 1,077 994 4,598 4,590 4,594 4,590 2,283 2,302 1,152 2,160 2,586 
R-squared 0.06 0.03 0.01 0.09 0.01 0.04 0.00 0.27 0.30 0.43 0.03 0.05 
Number of Subject 48 48 48 96 96 96 96 48 48 24 45 54 
Classification RMBL RMBL ADA RMBL RMBL RMBL RMBL RMBL RMBL RMBL IDBD IDBD 

             
Panel B: Discrete Analysis  
Positively Correlated 
PE × Small |PE|, Q1 

-3.32* 0.07 4.30 -10.72 -4.08 -11.65 -10.63 -5.84 -4.27 9.90 2.36 0.03 
(1.75) (2.08) (6.06) (9.25) (3.46) (8.64) (14.69) (6.03) (3.69) (7.61) (1.82) (1.07) 

             
Positively Correlated 
PE, A1 

5.16*** 4.70** 5.12* 19.72*** 15.17*** 20.01*** 15.97** 5.25 16.71*** 21.47 5.42*** 5.34*** 
(1.13) (1.81) (2.56) (5.86) (2.43) (4.18) (7.44) (3.36) (5.33) (13.36) (0.69) (0.53) 

             
Small |PE|, *1 2.17 -0.09 -2.85 9.83 2.16 5.33 8.67 5.10 6.74 -20.46 -2.09 -0.43 

 (1.84) (2.11) (4.77) (8.71) (3.63) (7.11) (14.33) (5.97) (6.12) (16.15) (1.65) (0.72) 
             

Observations 894 1,077 994 4,598 4,590 4,594 4,590 2,283 2,302 1,152 2,160 2,586 
R-squared 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.03 0.05 
Number of Subject 48 48 48 96 96 96 96 48 48 24 45 54 
Classification IDBD IDBD ADA IDBD IDBD IDBD IDBD ADA IDBD ADA IDBD IDBD 
Note: Subject level fixed effects OLS model with cluster-robust standard error for panels nested within subject level. PE stands for prediction error, i.e., PE = !! − !!∗. *** p<0.01, ** p<0.05, * 
p<0.1. 
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Table A.10. ∆Gi,t+1,t in Negative Feedback Market
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Table A.10: ∆#!,#$%,#in Negative Feedback Market 
 

Study and 
Description 

 LtFE in Positive and Negative 
Feedback Market / Bao et al. 

(2012), JEDC, 
Negative Feedback Markets 

  LtFE vs. LtOE Negative / Bao et 
al. (2013), EER 

 

Treatment REE = 56, 
1 ≤ = ≤
20 

REE = 41, 
21 ≤ = ≤ 43 

REE = 62, 
44≤ = ≤ 65 

LtFE LtFE+LtO
E 

Both 

LtFE+LtO
E 

Either 
Model (13) (14) (15) (16) (17) (18) 
       
Panel A: Continuous Analysis 
Positively Correlated 
PE × |PE|, Q, 

-0.01 9.00 0.10 1.34 0.15** 0.19 
(0.13) (7.09) (0.16) (1.06) (0.07) (0.15) 

       
Positively Correlated 
PE, A, 

2.21*** -24.57 3.16** 0.18 0.18 0.27 
(0.79) (21.01) (1.26) (2.78) (0.44) (0.63) 

       
|PE|, *, -0.07* -0.33 -0.14 0.07 -0.12 -0.06 
 (0.04) (0.22) (0.16) (0.23) (0.10) (0.04) 
       
Observations 2,586 910 1,088 998 1,150 2,012 
R-squared 0.05 0.02 0.06 0.02 0.01 0.00 
Number of Subject 54 48 48 48 24 42 
Classification IDBD ADA IDBD ADA RMBL ADA 
       
Panel B: Discrete Analysis 
Positively Correlated 
PE × Small |PE|, Q1 

-0.92 -41.25 -1.45 -0.44 -1.42** -1.85** 
(0.62) (33.50) (0.96) (3.06) (0.55) (0.71) 

       
Positively Correlated 
PE, A1 

2.74*** 23.05 3.95*** 2.61*** 1.49*** 1.78*** 
(0.63) (18.25) (1.12) (0.73) (0.50) (0.42) 

       
Small |PE|, *1 2.10*** 3.89 0.80 -1.24 1.39** 1.27** 
 (0.71) (2.44) (1.12) (2.96) (0.57) (0.56) 
       
Observations 910 1,088 998 1,150 2,012 1,726 
R-squared 0.04 0.01 0.02 0.00 0.00 0.01 
Number of Subject 48 48 48 24 42 36 
Classification IDBD ADA IDBD IDBD RMBL RMBL 
Note: Subject level fixed effects OLS model with cluster-robust standard error for panels nested within subject level. 
PE stands for prediction error, i.e., PE = !! − !!∗. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A.11. ∆Gi,t+1,t in Positive Feedback Market: Split Sample
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Table A.11: ∆#!,#$%,#	in Positive Feedback Market: Split Sample 
 

Study and Description  LtFE in Positive and Negative 
Feedback Market / Bao et al. 

(2012), JEDC, Positive Feedback 
Markets 

  Theory of Mind (ToM) / Bao et al 
(2024), JEBO 

  LtFE vs. LtOE 
Positive / Bao et 

al. (2017), EJ 

  Speculator vs. Supplier in 
Housing Market / Bao and 

Hommes (2019), JEDC 

 

Treatment REE = 56, 
1 ≤ = ≤
20 

REE = 41, 
21 ≤ = ≤ 43 

REE = 62, 
44≤ = ≤
65 

High-
ToM 

Medium 
High 
ToM 

Medium 
Low 
ToM 

Low-
ToM 

LtFE LtFE+LtOE 
Both 

No 
Supplier 

Low 
PES 

High PES 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
 
Panel A: Error Smaller than Subject-Level Median (Small Error = 1) 
Positively Correlated PE 1.83 4.46** 9.56* 10.18** 11.82*** 9.49 8.45 0.33 10.70** 31.68 7.56*** 5.40*** 

(1.66) (2.07) (4.90) (4.32) (3.11) (5.73) (5.72) (1.72) (4.56) (21.10) (1.81) (0.97) 
             
Observations 459 502 490 2,290 2,281 2,318 2,275 1,174 1,173 583 1,069 1,283 
R-squared 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.04 
Number of Subject 48 48 48 96 96 96 96 48 48 24 45 54 
             
Panel B: Error Larger than or Equal to Subject-Level Median (Small Error = 0) 
Positively Correlated PE 5.15*** 4.57** 5.42*** 17.90*** 14.99*** 17.95*** 15.27** 5.46 17.45*** 26.63 5.15*** 5.22*** 

(1.28) (1.73) (1.96) (5.37) (2.46) (3.65) (7.15) (3.31) (5.79) (17.88) (0.63) (0.52) 
             
Observations 435 575 504 2,308 2,309 2,276 2,315 1,109 1,129 569 1,091 1,303 
R-squared 0.05 0.02 0.02 0.01 0.03 0.01 0.00 0.00 0.01 0.00 0.02 0.07 
Number of Subject 435 575 504 2,308 2,309 2,276 2,315 1,109 1,129 569 1,091 1,303 
Note: Subject level fixed effects OLS model with cluster-robust standard error for panels nested within subject level. PE stands for prediction error, i.e., PE = !! − !!∗. *** p<0.01, ** p<0.05, 
* p<0.1. 
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Table A.12. ∆Gi,t+1,t in Negative Feedback Market: Split Sample
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Table A.12: ∆#!,#$%,# in Negative Feedback Market: Split Sample 
 
Study and 
Description 

 LtFE in Positive and Negative 
Feedback Market / Bao et al. 

(2012), JEDC,  
Negative Feedback Markets  

  LtFE vs. LtOE Negative / 
Bao et al. (2013), EER 

 

Treatment REE = 56, 
1 ≤ = ≤
20 

REE = 41, 
21 ≤ = ≤ 43 

REE = 62, 
44≤ = ≤ 65 

LtFE LtFE+Lt
OE 

Both 

LtFE+LtOE 
Either 

 (13) (14) (15) (16) (17) (18) 
       
Panel A: Error Smaller than Subject-Level Median (Small Error = 1) 
Positively Correlated 
PE 

1.79** -16.65 2.16** 1.95 0.14 0.01 
(0.83) (14.24) (0.92) (2.78) (0.62) (0.63) 

       
Observations 474 509 486 590 1,023 872 
R-squared 0.02 0.00 0.01 0.00 0.00 0.00 
Number of Subject 48 48 48 24 42 36 
       
Panel B: Error Larger than or Equal to Subject-Level Median (Small Error = 0) 
Positively Correlated 
PE 

2.75*** 27.00 4.10*** 2.41*** 1.41*** 1.83*** 
(0.70) (23.14) (1.11) (0.78) (0.48) (0.46) 

       
Observations 436 579 512 560 989 854 
R-squared 0.05 0.01 0.03 0.02 0.01 0.02 
Number of Subject 48 48 48 24 42 36 
Note: Subject level fixed effects OLS model with cluster-robust standard error for panels nested within subject 
level. PE stands for prediction error, i.e., PE = !! − !!∗. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A.13. ∆Gi,t+1,t in Positive Feedback Market: M-estimator
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Table A.13: ∆#!,#$%,#in Positive Feedback Market: M Regression 
 

Study and 
Description 

 LtFE in Positive and Negative 
Feedback Market / Bao et al. (2012), 

JEDC, Positive Feedback Markets 

  Theory of Mind (ToM) / Bao et al 
(2024), JEBO 

  LtFE vs. LtOE 
Positive / Bao et 

al. (2017), EJ 

  Speculator vs. Supplier in 
Housing Market / Bao and 

Hommes (2019), JEDC 

 

Treatment REE = 56, 
1 ≤ = ≤ 20 

REE = 41, 
21 ≤ = ≤ 43 

REE = 62, 
44≤ = ≤ 65 

High-
ToM 

Medium 
High 

Medium 
Low 

Low-
ToM 

LtFE LtFE+LtOE 
Both 

No 
Supplier 

Low PES High PES 

Model  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
 

Panel A: Continuous Analysis  
Positively Correlated 
PE × |PE|, Q, 

2.20*** 2.33*** 4.48*** 0.11*** 0.08*** 0.08*** 0.02** 0.53* 0.52*** 0.11 0.01 0.11*** 
(0.40) (0.64) (1.18) (0.03) (0.02) (0.02) (0.01) (0.27) (0.02) (0.06) (0.02) (0.03) 

             
Positively Correlated 
PE, A, 

0.51* 1.03** 1.22 2.93*** 4.87*** 4.61*** 3.88*** 0.52 0.21 2.84*** 3.20*** 3.27*** 
(0.28) (0.51) (0.87) (0.49) (0.57) (0.44) (0.37) (0.32) (0.28) (0.89) (0.32) (0.19) 

             
|PE|, *, -2.07*** -0.78 -3.42*** -0.04** -0.02 -0.02* -0.00 -0.34* -0.18*** -0.03*** -0.01 -0.11*** 

(0.39) (0.64) (1.17) (0.02) (0.01) (0.01) (0.00) (0.17) (0.02) (0.01) (0.02) (0.03) 
             
Observations 894 1,077 994 4,598 4,590 4,594 4,590 2,283 2,302 1,152 2,160 2,586 
Number of Subject 48 48 48 96 96 96 96 48 48 24 45 54 
Classification RMBL RMBL RMBL RMBL RMBL RMBL RMBL IDBD RMBL IDBD IDBD RMBL 

             
Panel B: Discrete Analysis  
Positively Correlated 
PE × Small |PE|, Q1 

-0.94* 2.18* -1.84 0.18 0.75 1.02 0.62 0.12 -0.51 -1.28* 0.14 -0.30 
(0.49) (1.22) (1.51) (0.70) (0.90) (0.83) (0.62) (0.19) (0.39) (0.75) (0.32) (0.24) 

             
Positively Correlated 
PE, A1 

2.03*** 1.40** 5.29*** 4.06*** 5.77*** 5.23*** 4.14*** 1.07*** 2.15*** 4.70*** 3.17*** 3.67*** 
(0.31) (0.57) (0.83) (0.36) (0.46) (0.39) (0.31) (0.11) (0.24) (0.61) (0.25) (0.18) 

             
Small |PE|, *1 0.92** -1.74 2.25* -0.22 -0.67 -0.65 -0.61 -0.13 0.85*** 1.08 0.02 0.23 

 (0.46) (1.06) (1.32) (0.64) (0.79) (0.68) (0.53) (0.15) (0.27) (0.74) (0.33) (0.22) 
             

Observations 894 1,077 994 4,598 4,590 4,594 4,590 2,283 2,302 1,152 2,160 2,586 
R-squared 48 48 48 96 96 96 96 48 48 24 45 54 
Classification IDBD IDBD IDBD IDBD IDBD IDBD IDBD IDBD IDBD IDBD IDBD IDBD 
Note: Subject level fixed effects robust estimator fits for M regression models with cluster-robust standard error for panels nested within subject level. PE stands for prediction error, i.e., PE = 
!! − !!∗. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A.14. ∆Gi,t+1,t in Negative Feedback Market: M-estimator
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Table A.14: ∆#!,#$%,# in Negative Feedback Market: M Regression 
 

Study and 
Description 

 LtFE in Positive and Negative 
Feedback Market / Bao et al. 

(2012), JEDC, 
Negative Feedback Markets 

  LtFE vs. LtOE Negative / Bao et 
al. (2013), EER 

 

Treatment REE = 56, 
1 ≤ = ≤
20 

REE = 41, 
21 ≤ = ≤ 43 

REE = 62, 
44≤ = ≤ 65 

LtFE LtFE+LtO
E 

Both 

LtFE+LtO
E 

Either 
Model (13) (14) (15) (16) (17) (18) 
       
Panel A: Continuous Analysis 
Positively Correlated 
PE × |PE|, Q, 

0.13*** 0.01 0.01 0.23*** 0.08*** 0.09*** 
(0.03) (0.01) (0.00) (0.07) (0.01) (0.02) 

       
Positively Correlated 
PE, A, 

0.66*** 0.57*** 0.66*** -0.18 -0.05 0.18 
(0.15) (0.15) (0.14) (0.19) (0.11) (0.12) 

       
|PE|, *, -0.05*** 0.00 -0.01* -0.05*** -0.02*** -0.02*** 
 (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) 
       
Observations 910 1,088 998 1,150 2,012 1,726 
R-squared 48 48 48 24 42 36 
Classification RMBL IDBD IDBD RMBL RMBL RMBL 
       
Panel B: Discrete Analysis 
Positively Correlated 
PE × Small |PE|, Q1 

-0.82*** -0.48*** -0.64*** -0.95*** -0.79*** -0.61*** 
(0.22) (0.16) (0.10) (0.25) (0.15) (0.17) 

       
Positively Correlated 
PE, A1 

1.31*** 0.82*** 0.97*** 0.72*** 0.62*** 0.74*** 
(0.16) (0.12) (0.11) (0.17) (0.10) (0.11) 

       
Small |PE|, *1 0.70*** 0.22** 0.14* 0.42*** 0.44*** 0.31*** 
 (0.15) (0.10) (0.08) (0.14) (0.08) (0.08) 
       
Observations 910 1,088 998 1,150 2,012 1,726 
R-squared 48 48 48 24 42 36 
Classification RMBL RMBL RMBL RMBL RMBL RMBL 
Note: Subject level fixed effects robust estimator fits for M regression models with cluster-robust standard error for 
panels nested within subject level. PE stands for prediction error, i.e., PE = !! − !!∗. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A.15. ∆Gi,t+1,t in Positive Feedback Market: Split Sample, M-estimator
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Table A.15: ∆#!,#$%,#in Positive Feedback Market: Split Sample, M Regression 
 

Study and Description  LtFE in Positive and Negative 
Feedback Market / Bao et al. 

(2012), JEDC, Positive Feedback 
Markets 

  Theory of Mind (ToM) / Bao et al 
(2024), JEBO 

  LtFE vs. LtOE 
Positive / Bao et 

al. (2017), EJ 

  Speculator vs. Supplier in 
Housing Market / Bao and 

Hommes (2019), JEDC 

 

Treatment REE = 56, 
1 ≤ = ≤
20 

REE = 41, 
21 ≤ = ≤ 43 

REE = 62, 
44≤ = ≤
65 

High-
ToM 

Medium 
High 
ToM 

Medium 
Low 
ToM 

Low-
ToM 

LtFE LtFE+LtOE 
Both 

No 
Supplier 

Low 
PES 

High PES 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
 
Panel A: Error Smaller than Subject-Level Median (Small Error = 1) 
Positively Correlated PE 1.35*** 3.84*** 4.28*** 5.27*** 7.29*** 7.23*** 5.65*** 1.27*** 2.03*** 3.86*** 3.76*** 3.59*** 

(0.44) (1.30) (1.43) (0.85) (0.93) (0.89) (0.69) (0.22) (0.50) (0.77) (0.28) (0.25) 
             
Observations 459 502 490 2,290 2,281 2,318 2,275 1,174 1,173 583 1,069 1,283 
R-squared 48 48 48 96 96 96 96 48 48 24 45 54 
             
Panel B: Error Larger than or Equal to Subject-Level Median (Small Error = 0) 
Positively Correlated PE 1.88*** 1.38*** 4.66*** 3.22*** 4.81*** 4.28*** 3.34*** 0.97*** 1.94*** 4.46*** 2.75*** 3.46*** 

(0.28) (0.48) (0.74) (0.27) (0.40) (0.31) (0.25) (0.10) (0.22) (0.65) (0.21) (0.17) 
             
Observations 435 575 504 2,308 2,309 2,276 2,315 1,109 1,129 569 1,091 1,303 
R-squared 48 48 48 96 96 96 96 48 48 24 45 54 
Note: Subject level fixed effects robust estimator fits for M regression models with cluster-robust standard error for panels nested within subject level. PE stands for prediction error, i.e., PE 
= !! − !!∗. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A.16. ∆Gi,t+1,t in Negative Feedback Market: Split Sample, M-estimator
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Table A.16: ∆#!,#$%,# in Negative Feedback Market: Split Sample, M Regression 
 
Study and 
Description 

 LtFE in Positive and Negative 
Feedback Market / Bao et al. 

(2012), JEDC,  
Negative Feedback Markets  

  LtFE vs. LtOE Negative / 
Bao et al. (2013), EER 

 

Treatment REE = 56, 
1 ≤ = ≤
20 

REE = 41, 
21 ≤ = ≤ 43 

REE = 62, 
44≤ = ≤ 65 

LtFE LtFE+Lt
OE 

Both 

LtFE+LtOE 
Either 

 (13) (14) (15) (16) (17) (18) 
       
Panel A: Error Smaller than Subject-Level Median (Small Error = 1) 
Positively Correlated 
PE 

0.47** 0.29* 0.34** -0.24 -0.14 0.14 
(0.20) (0.16) (0.15) (0.18) (0.15) (0.15) 

       
Observations 474 509 486 590 1,023 872 
R-squared 48 48 48 24 42 36 
       
Panel B: Error Larger than or Equal to Subject-Level Median (Small Error = 0) 
Positively Correlated 
PE 

1.35*** 0.82*** 1.02*** 0.73*** 0.59*** 0.69*** 
(0.17) (0.11) (0.11) (0.17) (0.09) (0.11) 

       
Observations 436 579 512 560 989 854 
R-squared 48 48 48 24 42 36 
Note: Subject level fixed effects robust estimator fits for M regression models with cluster-robust standard error 
for panels nested within subject level. PE stands for prediction error, i.e., PE = !! − !!∗. *** p<0.01, ** p<0.05, 
* p<0.1. 
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Appendix B Additional Figures

Figure B.1. Computer interface in Bao et al. (2024). DGP or the realized price of this asset
that is unknown to the subject is: p(t) = 1

1+r
(p̄e(t) + d) + et, where r = 0.05, d = 3.3,

et ∼ N (0, 1), and p̄e stands for the average prediction by all the subjects in the market.
The fundamental value of the asset can be determined by equating p(t) = p̄e(t), so that
p∗ = 66.
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0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Aboluste Prediction Error

 Aboluste Prediction Error ≤ Individual Median Aboluste Prediction Error > Individual Median
 ± 1.96 std. error of mean

dΔGi,t+1,t/dRi,t,t-1

Figure B.2. Coefficient of d∆Gi,t+1,t/dRi,t,t−1 with respect to absolute prediction error in 18
experiments, separated by its absolute prediction error with respect to individual median.
The detailed regression coefficients can be found in Table A.11 and A.12
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Aboluste Prediction Error

 Aboluste Prediction Error ≤ Individual Median Aboluste Prediction Error > Individual Median
 ± 1.96 std. error of mean

dΔGi,t+1,t/dRi,t,t-1 in sample where dYi,t+1,t/dRi,t,t-1>0

Figure B.3. Coefficients of d∆Gi,t+1,t/dRi,t,t−1 with respect to absolute prediction error in
the sample where dYi,t+1,t/dRi,t,t−1 > 0 in 18 experiments, separated by its absolute
prediction error with respect to individual median.
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Aboluste Prediction Error

 Aboluste Prediction Error ≤ Individual Median Aboluste Prediction Error > Individual Median
 ± 1.96 std. error of mean

dΔGi,t+1,t/dRi,t,t-1, M-estimator

Figure B.4. M-estimator: coefficients of d∆Gi,t+1,t/dRi,t,t−1 with respect to absolute
prediction error in the sample in 18 experiments, separated by its absolute prediction error
with respect to individual median The detailed regression coefficients can be found in Table
A.15 and A.16.
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Appendix C Experimental Instruction for a Typical LtFE

The following instructions are taken from Bao et al. (2024).

Welcome to our experiment! You are participating in an experiment with a real monetary

reward. There are 6 participants in each market. In other words, your payoff from the

experiment depends on your decision and the decisions of the other 5 participants in your

market. The experiment consists of 50 periods. When the experiment ends, we will pay you

according to the total number of points you earned. The exchange rate is 80 points = 1

RMB.

The experiment is anonymous. You do not know the identity of the other participants, nor

do they know yours. You are not allowed to communicate with others during the experiment,

and please place your cell phone in the place assigned by the experimenter.

The following is a detailed description of the experimental setup. Please read it carefully

and listen to the explanation by the experimenter. If you have any questions, please feel free

to ask.

Your role in the experiment is a financial advisor to an investment fund that wants to

optimally invest a large amount of money. The fund is a major participant in the market

of some risky assets. The experiment consists of 50 periods. Before the beginning of each

period, you must predict the asset price of the risky asset for the investment fund. Based

on your prediction, the fund will decide the unit of the risky asset to purchase or sell. The

investment fund has two investment options for the limited fund: a risk-free investment

(e.g., government bond), with an interest rate of 5%; and a risky investment (e.g., stock),

where the value of the dividend of the stock is 3.3 points. According to finance theory, the

fundamental value of the risky asset is positively correlated with its dividend and negatively

correlated with the interest rate of the risk-free asset.

Note that your prediction is the only determinant of the fund’s purchasing/selling de-

cision. The more accurate you predict, the more money the fund will earn. Accordingly,

your earnings in each period in the experiment solely depend on your forecasting accuracy

in each period. At the end of the experiment, we will pay you according to the total points

you earn in 50 periods.

Participants need to complete a test before the beginning of the experiment. Please

answer the questions carefully.

1. The determination of the asset price
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The stock price is determined by the following mechanism: when the total demand for

risky asset in the market is larger than the total supply, or when the total assets firms want to

purchase is larger than the total assets firms want to sell, the price will increase. Conversely,

if the total demand for risky asset in the market is smaller than the total supply, the price

will decrease. This rule is generally consistent with the reality.

There are some large investment funds in the market, where each of the investment

funds is advised by a financial advisor played by a participant in the experiment (like you).

Generally speaking, the funds will buy more of the risky asset if the financial advisor forecasts

that the price of the risky asset will increase, whereas they will sell more assets if the financial

advisor forecasts that the price of the risky asset will decrease. The total demand and total

supply of the asset are determined by the total purchasing/selling decisions of these large

investment funds in the market.

2. Your task in the experiment

Your only task in the experiment is to forecast the market price in each period. At

the beginning of the experiment, you need to submit your forecast for the price in the

first period, where the forecast should range between 0 to 100. After all participants have

submitted their forecasts for the first period, the investment fund played by the computer will

make the decisions on purchasing/selling quantities based on each participant’s predictions.

After that, the experimental program will determine the asset price in the current period

using the total purchasing and selling quantities and reveal it to everyone. Based on your

forecasting error, your earnings (in points) for period 1 will be calculated.

Next, you need to submit your forecasts for the price in the second period. After all

participants have submitted their predictions for the second period, the market price in the

second period will be calculated based on all the predictions and their corresponding trading

decisions. This process continues for 50 periods. In each period, the available information

comprises the previous market prices, your previous predictions, and your previous earnings.

Specifically, the experimental procedure in each period is as follows:

In general, at period t (t ≥ 2), participants need to predict the asset price in the

current period t at the beginning of period t. When forecasting the price, the following

information will be disclosed on the user interface: the interest rate of risk-free asset γ,

expected dividend of risky asset y, participant’s previous predictions up to t− 1,

previous prices up to period t− 1, previous total earnings up to period t− 1.

Participants only need to fill up the price forecast for the current period in the cor-
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responding experimental program. After collecting the price forecasts from all participants,

the program will disclose the market price in period t, Pt, and the earnings in point that is

calculated based on the predicting error between the price forecasts P e
h,t and market price

Pt, at the end of period t. In other words, the actual asset price that was predicted

at the beginning of each period will be disclosed at the end of each period.

Simply put, when t ≥ 2 such as at the beginning of period 5, participants will need to

predict the market price in period 5. After all participants submit their forecasts on the

price for period 5, the actual market price for the asset in period 5 will be disclosed at

the end of period 5. Next is to predict the price in period 6 at the beginning of period 6,

where the actual market price for period 6 will be derived using the forecasting price and its

corresponding demand/supply equation. And so on.

Specifically, when t = 1, participants only need to submit the price forecasts, where no

market price and earnings (in points) will be disclosed. The price forecasts for period 1 need

to range between 0 and 100.

Note that 60 seconds is given to you for forecasting in each period. Please submit your

price forecasts before the end of the countdown. Except for the first period, where the

price forecasts need to range between 0 to 100, all price forecasts from period 2 could range

between 0 to 1000. All predictions could have an accuracy up to 2 decimal points.

3. Your payoff

Earnings in each period will depend only on the forecasting accuracy in the corresponding

period. The more accurate you predict the asset price in each period, the higher your

aggregate earnings will be. In other words, as your prediction error increases, or as the

difference between the actual stock price and your price forecasts increases, your payment

decreases. When your forecast equals the stock price, you get 100 points. When your

prediction error is greater than 7, you get 0 points. Hence, your earnings in each period are:

earning = max

{
100− 100
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× (prediction error)2, 0

}
The earnings with regards to the prediction error is plotted as follows:

49



50


	Introduction
	Theory
	Adaptive Expectation Rule
	Reference Model Based Learning
	Incremental Delta-Bar-Delta Algorithm

	Data
	Methods
	Continuous Analysis 
	Discrete Analysis

	Testable Hypotheses
	User of Reference Model Based Learning 
	User of Incremental Delta-Bar-Delta Algorithm
	User of Adaptive Expectation Rule

	Main Results
	Satisficing in Learning
	Heterogeneity of Maximum Allowable Prediction Error

	Extended Investigation on Estimated Continuous learning Speed
	Procedure
	Result

	Concluding Remarks and Future Research
	Additional Tables
	Additional Figures
	Experimental Instruction for a Typical LtFE


