Reference Model Based Learning in Expectation Formation: Experimental Evidence

Jiaoying Pei

April, 2024

How do people form expectations about future prices in financial market?

REH

Assume perfect rationality

- perfect knowledge for underlying market equilibrium,
- perfect knowledge about the beliefs of all other agents in the market,
- mental capacity to calculate the REE,
- ▶

Simple Heuristics

ADA, that including only most recent prediction (*) and realised price :

$$p_t^* = p_{t-1}^* + ar{G}(p_{t-1} - p_{t-1}^*), \quad 0 < ar{G} < 1$$
 (1)

People adjust their predictions by adapting to the most recent prediction error at a *constant* weight

- Problem: implies subjects are very hard-working
 - People will perpetually adapt to the past prediction error until they reach 0 prediction error
- No, b/c Bao et al. (2022) suggests subjects satisfice
 - "If it ain't broke, don't fix it."
 - Best prediction = least square learning = minimize sum of squared prediction error
 - In the structural estimation p = α + β × weather + ε, where they are tasked to estimate α and β and be paid according to the prediction error of p
 - Subjects stop update α and β once the prediction error is small enough (not 0) for them

Reference-model based learning (RMBL): extends and generalizes ADA in two aspects

Modification 1: Dynamic weighted average of the previous prediction and the last observed price,

$$p_t^* = p_{t-1}^* + G_t(p_{t-1} - p_{t-1}^*)$$
(2)

- ΔG similar as in Hommes and Sorger (1998), but assume an myopic agent.
 - For $e_t = p_t p_{t-1}$:
 - ↑ G if cov(e_t × e_{t-1}) > 0 : under-prediction followed by under-prediction, adaption was too timid, increase the adaption coefficient G
 - ▶ \downarrow *G* if $cov(e_t \times e_{t-1}) < 0$: under-prediction followed by over-prediction, adaption was too aggressive, decrease the adaption coefficient *G*
 - ▶ Hommes and Sorger (1998): adapt to LR price \bar{p} instead of p_{t-1}^* , and consider the sample autocorrelation of full history prediction error

RMBL extends and generalizes ADA in two aspects, contd.

Modification 2: Implement a Stopping / Satisficing Rule

- Adjust adaption coefficient G = speed up learning
- Only speed up learning when the prediction error e_t is larger than an objective threshold Z
- i.e., $|\Delta G| > 0$ only if $(e_t)^2 Z > 0$
- ▶ A reference model can be any model, so that Z can be any Z
 - reference model defined as Kalman filter (i.e., ADA) in Bossaerts (2018) but "desired level of mean return and return volatility" when it is later applied to asset pricing in Berrada et al. (2024)
- Assume Z_i: maximum allowable threshold for each subject
- \blacktriangleright $Z_i > 0$: satisficing

RMBL extends and generalizes ADA in two aspects: Summary

$$p_t^* = p_{t-1}^* + G_t(p_{t-1} - p_{t-1}^*)$$

- ADA(Evans and Honkapohja, 2001): G_t is a constant
- Incremental Delta-Bar-Delta Algorithm (IDBD); d'Acremont and Bossaerts, 2016): ΔG_{t+1,t} > 0 is a function of Cov(e_t, e_{t-1})

• the process never end until $e_t = 0$, i.e., never satisfice

► RMBL(Bossaerts, 2018): $\Delta G_{t+1,t} > 0$ when $\Omega_t = e_t^2 - Z > 0$

A horse race test to determine whether the expectation formation fits more closely to

- RMBL
- IDBD (RMBL without satisficing)
- ADA (IDBD with a constant gain factor),

using data from Learning to Forecast Experiments (LtFEs).

Expectation formation data from five set LtFEs (Bao et al., 2012; 2013; 2017; Bao and Hommes, 2019; Bao et al., 2024)

- Rich observations of 41,490 predictions from 801 subjects
- Allow full history of realized prices and predictions.
- Incentivize subjects to submit the most accurate prediction rather than to strategize.
 - avoid "testing join hypothesis" problem in traditional markets where ppl subject quantity decisions

summary on dataset

Typical Interface of a LtFE

- 6-10 subject in each market, 40-65 consecutive periods
- subject play the role of professional forecasters, payoff function is a inverse function with prediction error
- ▶ no knowledge on DGP (e.g., $p(t) = \frac{1}{1+r}(\bar{p}^e(t) + d) + e_t)$: know d, r but not $\bar{p}^e(t) = play$ with the market

We do not have information on maximum allowable error Z_i in existing LtFEs.

Instead, we implement remedy of:

- Continuous analysis: when error is larger, ...
- Discrete analysis: when error is larger-than-individual-median, ...

do subject more likely to increase (decrease) *G* when the most two recent errors are positively (negatively) correlated?

Continuous analyses

RMBL: whether estimated continuous learning rate — possibility that one increases G when most recent two errors are positively correlated — is higher, when error is higher.

Subject FE logit:

$$Y_{i,t+1,t} = \sum_{j=1}^{N} D_{ij} \alpha_i^c + \beta^c E_{i,t} + \gamma^c R_{i,t,t-1} + \delta^c (E_{i,t} \times R_{i,t,t-1}) + \epsilon_{i,t}$$
(3)

- Y_{i,t} (increase G, binary): it equals to 1 if at period t, subject i increases G in period t + 1, in other words ΔG_{i,t+1,t} > 0; and equals 0 if ΔG_{i,t+1,t} < 0</p>
- $\begin{array}{l} \blacktriangleright \ R_{i,t,t-1} \ (\mbox{Positively correlated Error, binary}): \ \mbox{equals to 1 if} \\ Cov(e_{i,t},e_{i,t-1}) = e_{i,t}e_{i,t-1} > 0; \ \mbox{equals to 0 if} \ Cov(e_{i,t},e_{i,t-1}) < 0. \end{array}$
- ► $E_{i,t}$ denotes the absolute prediction error subject *i* incurs at period *t*, i.e., $|e_{i,t}|$, where $e_{i,t} = p_{i,t} p_{i,t}^*$.
 - instead of squared error, b/c squared error can be very large (e.g., up to a maximum of 648,073 in Model 6), making the coefficient hard to interpret

Continuous analyses: Hypothesis

$$Y_{i,t+1,t} = \sum_{j=1}^{N} D_{ij} \alpha_{i}^{c} + \beta^{c} E_{i,t} + \gamma^{c} R_{i,t,t-1} + \delta^{c} (E_{i,t} \times R_{i,t,t-1}) + \epsilon_{i,t}$$
(4)

RMBL:

- δ^c > 0: when error E_{i,t} is larger, subjects are more likely to increase G when the most recent two errors are positively correlated.
- ▶ $\gamma^{c} \geq 0$: non-negative correlation between $R_{i,t,t-1}$ and $Y_{i,t}$

• Zero correlation: allowing for $\Delta G_{i,t+1,t} = 0$ when error is large

IDBD:

•
$$\delta^c = 0; \ \gamma^c > 0$$

ADA:

Discrete analyses: Hypothesis

Define $SE_{i,t} = 1$ if error is larger than individual median

- Median (instead of average) for balanced sample size & remove effect from outlier.
- Smaller percentile is more intuitive but favor RMBL in split-sample comparison.

$$Y_{i,t+1,t} = \sum_{j=1}^{N} D_{ij}\alpha_i^d + \beta^d \mathsf{SE}_{i,t} + \gamma^d R_{i,t,t-1} + \delta^d (\mathsf{SE}_{i,t} \times R_{i,t,t-1}) + \epsilon_{i,t}$$
(5)

Discrete analyses: Hypothesis, contd.

$$Y_{i,t+1,t} = \sum_{j=1}^{N} D_{ij}\alpha_i^d + \beta^d \mathsf{SE}_{i,t} + \gamma^d R_{i,t,t-1} + \delta^d (\mathsf{SE}_{i,t} \times R_{i,t,t-1}) + \epsilon_{i,t}$$

RMBL:

larger-than-median error:

$$\frac{dY_{i,t+1,t}}{dR_{i,t,t-1}} = \gamma^d + \delta^d SE_{i,t} > 0 \quad \text{when } SE_{i,t} = 0 \tag{6}$$

smaller-than-median error:

$$\frac{dY_{i,t+1,t}}{dR_{i,t,t-1}} = \gamma^d + \delta^d SE_{i,t} \ge 0 \quad \text{when } SE_{i,t} = 1$$
(7)

- Equation (6): $\delta^d < 0$; $\gamma^d > 0$
- Equation (7): location of Z_i
 - When Z_i is at the median of $E_{i,t}$, $\frac{dY_{i,t+1,t}}{dR_{i,t,t-1}} = 0$ at $SE_{i,t} = 1$, so that $\gamma^d + \delta^d = 0$

▶ When Z_i is much smaller than the median of $E_{i,t}$, $\frac{dY_{i,t+1,t}}{dR_{i,t,t-1}} > 0$ at $SE_{i,t} = 1$, so that $\gamma^d + \delta^d > 0$

Discrete analyses: Hypothesis, contd.

$$Y_{i,t+1,t} = \sum_{j=1}^{N} D_{ij}\alpha_i^d + \beta^d \mathsf{SE}_{i,t} + \gamma^d R_{i,t,t-1} + \delta^d (\mathsf{SE}_{i,t} \times R_{i,t,t-1}) + \epsilon_{i,t}$$

IDBD:

$$\blacktriangleright \ \delta^d = 0; \ \gamma^d > 0$$

ADA:

$$\blacktriangleright \ \delta^d = 0; \ \gamma^d = 0$$

Findings

Finding 1: RMBL dominates. All the experiments in our dataset show signs of satisficing in at least one of the discrete or continuous analyses. Meanwhile, IDBD could also provide explanatory power for 3 out of the total of 18 experiments. **pooled results**

Finding 2: The observation where RMBL explains well on the learning behaviour in all the experiments are robust in split-sample comparison and cross-study analysis. split-sample results

Finding 3: Z is not a universal constant and display heterogeneity across the experiment. Proved results

Findings, contd.

Figure 1: Coefficients of $\frac{dY_{(i,t+1,t)}}{dR_{(i,t,t-1)}}$ with regards to absolute prediction error in 18 experiments, separated by its absolute prediction error with regards to individual median.

Findings, contd.

For those models where Z_i is at the median of prediction error:

	Median <i>E_i</i> (1)
Model 16 (LtFE) = 1	0.67***
${\sf Model} \ 17 \ {\sf (LtFE+LtOE \ Both)} = 1$	(0.06) 2.06*** (0.15)
Model 18 (LtFE + LtOE Either) = 1	(0.13) 1.50*** (0.08)
Constant (Model 14 (REE = 41, 21 $\leq t \leq$ 43) = 0)	0.51*** (0.03)
Observations R-squared	150 0.70

Table 1: Comparison of Median E_i in Models where $\gamma^d + \delta^d = 0$

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Conclusion and Contributions

First economic experiment with large sample size (observation = 41,490; #Subject = 801) to test RMBL.

- RMBL that people adjust how they adapt to past prediction errors with regards to the correlation of the error term;
- Meanwhile, they exhibit satisficing behavior, where they would only do so when the most recent prediction error is larger than their maximum allowable threshold.

We find evidence that RMBL, the generalized ADA, explains the data in LtFEs (regardless of its feedback system) well.

- Consistent with the satisficing evidence in LtFE when subjects are tasked to provide structural estimation (Bao et al., 2022)
- Consistent with evidence found in neuroscience study using fMRI (d'Acremont and Bossaerts, 2016; N=21; Danckert et al., 2012; N=35)

Limitations and Future Research

Causal study

- Manipulating Z: tell subjects the median/average payoff per period (e.g., in a certain game)
- Directing asking Z
 - Post-experiment questionnaire
 - Algo-trading experiment
- Alternative explanation on Z:
 - Instead of a maximum allowable error, it is a minimum allowable profit

Thank you !

Jiaoying Pei: peij0003@e.ntu.edu.sg

Appendix

Summary of Dataset

Table A.1: Summary of the Dataset Used: Positive Feedback Market

Study / Abbrev	Description	Treatment	Summary S	tatistics	Model	Realized Price Dynamics
Bao et al. (2012), JEDC / LtFE in Positive and Negative	LtFEs investigate the converge behaviour in positive and feedback market. They find that negative feedback market converge quickly while positive feedback market do not and show underreaction to short run and overreaction in the long run.	$\begin{array}{l} \text{REE} = 56, \\ 1 \leq t \leq 20 \end{array}$	Var(Price): E(PE): #Obs:	14.6 0.973 960	(1)	100 90 80 70
Feedback Market	 Market size = 6 # Subject = 48 in each treatment Convergence to REE: × Within-subject design, from (1) to (2) to (3) 	$\begin{array}{l} \text{REE} = 41, \\ 21 \leq t \leq 43 \end{array}$	Var(Price): E(PE): #Obs:	47.7 0.573 1104	(2)	60 46 50 40 30
		$\begin{array}{l} \text{REE} = 62, \\ 44 \leq t \leq 65 \end{array}$	Var(Price): E(PE): #Obs:	67.1 0.744 1056	(3)	20 10 0 10 20 30 40 60 60 70 Period
Bao et al.(2024), JEBO / Theory of	LtFEs investigate whether market become more stable, resulting in lower volatility and fewer price bubbles when it is filled with people high theory of mind (ToM) capability, compared with the	High ToM	Var(Price): E(PE):	9347.0 13.56	(4)	
Mind (ToM)	counterpart that filled with low ToM subjects. No significant differences are found. - Market size = 6	Medium High	Var(Price): E(PE):	21963.2 16.25	(5)	
	 # Subject = 96 in each treatment # Obs = 4800 in each treatment Convergence to REE: * 	Medium Low	Var(Price): E(PE):	10444.8 16.04	(6)	
	- Between- subject	Low ToM	Var(Price): E(PE):	33306.2 26.80	(7)	

Note: In the column of realized price dynamics, y-axis denotes the average price while x-axis regresents the period. There are 70 priods in Base et al. (2012) while only 50 periods in Base et al. (2024). In both studies, the dotted line are the fundamental value or rational expectation equilibrium (REE) of the price, while the solid lines are the realized market price (which is a function of all subjects prediction on the price). As the solid line is still far away from the dotted line, it is concluded that the price does not converge to REE at the of the experiment. The quantitative approach of measuring whether the price converges using relative and absolute deviation can be found in respective original studies. PE stands for prediction error, i.e., $PE = p_r - P_r$.

Appendix: Dataset

Table A.2: Summary of the Dataset Used: Positive Feedback Market

Study /	Description	Treatment	Summary Statistics	Model	Realized Price Dynamics
Abbrev					
Bao et al.	Compare the price dynamics and hubbles formation in asset across three	LtFE	Var(Price): 71.3	(8)	100
(2017) EL/	treatments: (1) I tEE where subjects submit price only: (2) I tOE where	LUL	E(PE): 1.267	(0)	80
LIFE IN LIOF	while the set of the state of t		E([1 E]). 1.207		
LIFE VS. LICE	subjects choose quantity to buy/sell, (5) perform both tasks, where payon				°
Positive	depends on price or quantity decision in equal probability. They find that	LtFE + LtOE	Var(Price): 1416.8	(9)	40
	bubble is larger in (2) and (3) compared to (1).	Both	E(PE): 7.665		20
	 Exclude data in (2) because no price prediction 				
	 Market size = 6 				0 00 20 30 40 50
	 # Subject = 48 in each treatment 				(a) Georp 1
	# Obs = 2400 in each treatment				130 Emissipton
	- # Obs - 2400 in each dealment				× /
	- Convergence to REE. *				2
	 Between- subject 				1 11 20 50 40 50
					- Area
					and the second
					- <u>V</u>
					(a) Geosp 1
					TATER: (D. B. L. M. L. M.

Left: LtFE in (1); Right: Mixed in (3)

Note. In the column of realized price dynamics, y-axis denotes the average price while x-axis represents the period. There are 50 periods of the game. The dotted black lines are the fundamential value or rational expectation equilibrium (REE) of the price or the quantity, while the solid lines are the realized market price or quantity (which is a function of all subjects prediction decision on the price). As the solid line of price prediction is buy from the dotted line, it is concluded but the price does not encourse to REE at the and of the experiment. The quantitative approach of measuring whether the price converges using relative and absolute deviation can be found in respective original studies. PE stands for prediction error, i.e., $PE = p_r - p_r^2$.

Table A.3: Summary of the Dataset Used: Positive Feedback Market

Study /	Description	Treatment	Summary Statistics	Model	Realized Price Dynamics
Abbrev					
Bao and Hommes (2019), JEDC / Speculator vs. Supplier in Howing	Housing market is a combination of positive feedback market (through speculative demand) and negative feedback market (through endogenous supply of housing). The study designs an experimental housing market and study how the strength of the negative feedback, the price elasticity of supply (PES), affect market stability. The result suggests that market stabilizes and endose non-stability and DEE only when these is strom PES where	No Supplier (N)	Var(Price): 11004.0 E(PE): 11.78 Converge × to REE?	(10)	
Market	Satorizz and pice converge to Reat only Matriate is a storing it is write there is elastic boosing supply (Treatment II: PEES = 0.25), but fail to do so when there is no supplier (Treatment II: PEES = 0.1) are main to do so (Treatment L: PES = 0.1). • Market size = 0 in N, Market size = 9 in L and H • # Subject: Treatment N = 24: Treatment II = 45: Treatment H = 54	Low PES (L)	Var(Price): 265.0 E(PE): 17.01 Converge × to REE?	(11)	¹⁰⁰
	# Obs. Treatment N = 1200; Treatment L = 2250; Treatment H= 2700 Between-subject	High PES (H)	Var(Price): 24.0 E(PE): 3.386 Converge ✓ to REE?	(12)	

Note: In the column of realized price dynamics, y-axis denotes the average price while x-axis represents the period. There are 50 periods in total. The black line are the fundamental value rational expectation cellibrium (REE) of the price, while the blue line is the realized market price (which is a function of all subjects prediction on the price), bate is solid line in N1 and H1 is still far away from the black line in the end of the experiment, while aride around the black line in H1, we conclude that only H1 converge to REE. The quantitative approach of measuring whether the price converges using relative and absolute dvalues on an expective original studies. PE stands for prediction error, i.e., $P = p_{-} - p_{-}^{-1}$

Table A.4: Summary of the Dataset Used: Negative Feedback Market

Study / Abbrev	Description	Treatment	Summary S	tatistics	Model	Realized Price Dynamics
Bao et al. (2012), JEDC / LtFE in	Same as in Model 1 – 3: LtFEs investigate the converge behaviour in positive and feedback	REE = 56, $1 \le t \le 20$	Var(Price): E(PE): #Obs:	3.5 2.314 960	(13)	100) 90 00 70
Positive and Negative Feedback Market	market. I ney find that negative reconcise market converge quickity while positive feedback market do not and show underreaction to short run and overreaction in the long run. - Market size = 6 # Sphing = 48 in and treatment	$\begin{array}{l} \text{REE} = 41, \\ 21 \leq t \leq 43 \end{array}$	Var(Price): E(PE): #Obs:	11.7 3.426 1104	(14)	20 000 40 00 20 20
	- Convergence to ReE: \checkmark Within-subject design, from (1) to (2) to (3)	$\begin{array}{l} \text{REE} = 62, \\ 44 \leq t \leq 65 \end{array}$	Var(Price): E(PE): #Obs:	21.9 3.591 1056	(15)	10 0 10 20 30 40 50 60 70
Bao et al. (2013), EER / LtFE vs.	Consider both forecasting (LtFE) and optimization decisions (LtOE) in a negative feedback market (i.e., experimental cobweb economy). The treatment include (1) LtFE: price forecasts only; (2) LtOE: quantity	LtFE	Var(Price): E(PE):	5.7 2.465	(16)	Average Price in Transment 1
LtOE Negative	only; (3) LtFE + LtOE Both; (4) LtFE + LtOE Either, where they are paired in teams of 2, where one assigned with LtFE and another assigned with LtOE. All treatments converge to REE but at different	LtFE + LtOE Both	Var(Price): E(PE):	56.7 4.463	(17)	20 4 15 - 16 -
	speed. Performance is the best in (1) and worst in (3). Exclude data in (2) because no price prediction Market Size (1c., number of subjects subject price prediction) in each treatment = 6 # Valid Subject: LIFE: 24, LIFE+LIOE Both-22, LIFE + LIOE Either: 36 # Obs: LIFE: 100 Convergence to REE: ✓ Between- subject	LtFE + LtOE Either	Var(Price): E(PE):	21.4 3.517	(18)	

Note: In the column of realized price dynamics, y-axis denotes the average price while x-axis represents the period. There are 50 periods in total. The smooth lines are the fundamental value or rational expectation equilibrium (REE) of the price, while he dotted line is the realized matter brice (which is a function of all subjects prediction on the price). As the smooth line is close to the dotted line in all the market, we conclude that price coverege to REE. The quantitative approach of measuring whether the price covereges using relative and absolute deviation can be found in expected to expland the price coverege to REE. The quantitative approach of measuring whether the price covereges using relative and absolute deviation can be found in respective original studies. For stands for prediction error, i.e., $\mathbf{P} = \mathbf{p} - \mathbf{p}^{-1}$.

Main Results: Pooled

Table A.5: $\frac{dY_{i,t+1,t}}{dR_{i,t,t-1}}$ in Positive Feedback Market

Study and Description	LtFE in Feedback M JEDC, Pa	Positive and No Market / Bao et ositive Feedback	egative al. (2012), <i>Markets</i>	Theo	ry of Mind ((2024),	(ToM) / Bao JEBO	et al	LtFE Positiv al. (2	vs. LtOE re / Bao et 017), EJ	Speculator vs. Supplier in Housing Market / Bao and Hommes (2019), JEDC		
Treatment	REE = 56,	REE = 41,	REE = 62,	High-	Medium	Medium	Low-	LtFE	LtFE+LtOE	No	Low PES	High PES
	$1 \le t \le 20$	$21 \le t \le 43$	$44 \le t \le 65$	ToM	High	Low	ToM		Both	Supplier		
Model	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Panel A: Continuous Ar	alysis	0.76888	0.02888	0.02888	0.01888	0.01888	0.01688	0.55888	0.15888	0.01888	0.16888	0.22666
POSITIVELY COrrelated	(0.28)	(0.25)	(0.26)	(0.00)	(0.00)	(0.00)	(0.00)	(0.11)	(0.02)	(0.01)	(0.02)	(0.06)
FE X FE , 0	(0.58)	(0.23)	(0.26)	(0.00)	(0.00)	(0.00)	(0.00)	(0.11)	(0.05)	(0.01)	(0.05)	(0.00)
Positively Correlated	0.40*	0.55***	0.65***	1 34***	1 37***	1 47***	1 30***	0.62***	0.72***	1 09***	1 25***	2.05***
PE v ^c	(0.21)	(0.17)	(0.20)	(0.07)	(0.07)	(0.07)	(0.07)	(0.14)	(0.12)	(0.18)	(0.22)	(0.15)
,7	(()	(0.20)	(0.07.)	(0.00.)	(0.0.7)	(0.0.1)	(0.1.1)	(0112)	()	(0.22)	(0110)
PEL B ^c	-0.89***	-0.24*	-0.58***	-0.01***	-0.00**	-0.00***	-0.00***	-0.27***	-0.14***	-0.01	-0.12***	-0.14**
1 01	(0.33)	(0.14)	(0.21)	(0.00)	(0.00)	(0.00)	(0.00)	(0.08)	(0.03)	(0.01)	(0.03)	(0.06)
Observations	852	1,053	978	4,558	4,576	4,572	4,551	2,246	2,269	1,138	2,142	2,513
Number of Subject	48	48	48	96	96	96	96	48	48	24	45	54
Classification	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL
Banal B. Diamata Anala	-1-											
Panel B: Discrete Analy	1 21666	0.20	1 10666	1 1 1 6 6 6	0.79888	0.66888	0.01444	0.75888	1.24666	1.04888	1.02444	1 77444
POSITIVETY CORETated	-1.21	-0.39	-1.10	-1.11	-0.78	-0.00	-0.91	-0.73	-1.24	-1.04	-1.92	-1.//
FE X Sman FE , 0	(0.50)	(0.20)	(0.29)	(0.15)	(0.15)	(0.15)	(0.15)	(0.18)	(0.18)	(0.50)	(0.59)	(0.27)
Positively Correlated	1.70***	1.08***	1.80***	2.10***	1.93***	1.95***	1.96***	1.59***	1.81***	2.09***	4.16***	3.92***
PE, γ^d	(0.23)	(0.19)	(0.22)	(0.10)	(0.10)	(0.10)	(0.10)	(0.13)	(0.14)	(0.24)	(0.36)	(0.23)
	(()	(0.22)	()	()	(0.1.0)	(0110)	(0.10)	(0111)	(0.2.1)	(0.0.0)	(0
Small $ PE $, β^d	0.61***	-0.16	0.46**	0.52***	0.25**	0.28***	0.38***	0.21	0.70***	0.61**	1.18***	0.84***
1 10	(0.22)	(0.20)	(0.22)	(0.11)	(0.10)	(0.10)	(0.10)	(0.13)	(0.13)	(0.26)	(0.38)	(0.24)
Observations	852	1,053	978	4,558	4,576	4,572	4,551	2,246	2,269	1,138	2,142	2,513
Number of Subject	48	48	48	96	96	96	96	48	48	24	45	54
Classification	RMBL	IDBD	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL
Test: $\gamma^a + \delta^d$	0.491**		0.692***	0.989***	1.145***	1.295***	1.045***	0.840***	0.568***	1.054***	2.240***	2.144***
	(0.2)		(0.19)	(0.09)	(0.09)	(0.09)	(0.09)	(0.12)	(0.12)	(0.19)	(0.17)	(0.14)
E (Median of \mathcal{E}_i)	0.391		0.522	5.168	6.201	3.771	12.11	0.919	2.432	5.905	13.90	2.142

Note: Logit estimates fit for panel data with subject level fixed effect (except for Model 9 in Panel A where subject level fixed effect model cannot converge, so that a random effect model is implemented). PE stands for prediction error, i.e., $PE = p_t - p_t^2$, *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A.6: $\frac{dY_{i,t+1,t}}{dR_{i,t,t-1}}$ in Negative Feedback Market

Study and Description	LtFE Feed	in Positive and back Market / B (2012), JEDC	Negative lao et al.	LtFE vs. 1 a	LtOE Negativ I. (2013), EER	e / Bao et
-	Neg	ative Feedback M	Markets			
Treatment	REE = 56,	REE = 41,	REE = 62,	LtFE	LtFE+LtO	LtFE+LtO
	$1 \le t \le$	$21 \le t \le 43$	$44 \le t \le 65$		E	E
	20		(15)	0.0	Both	Either
Model	(15)	(14)	(15)	(16)	(17)	(18)
Panel A: Continuous A	nalysis					
Positively Correlated	0.38***	0.04*	0.02	0.47***	0.14***	0.20***
$PE \times PE , \delta^c$	(0.10)	(0.02)	(0.02)	(0.09)	(0.02)	(0.04)
Positively Correlated	0.75***	1.10***	1.33***	-0.21	-0.05	0.20
PE, γ^c	(0.20)	(0.16)	(0.17)	(0.17)	(0.13)	(0.14)
$ PE , \beta^c$	-0.16***	0.01	-0.01	-0.12***	-0.04***	-0.05***
	(0.05)	(0.01)	(0.01)	(0.03)	(0.01)	(0.02)
Observations	791	918	826	1,087	1,846	1,537
Number of Subject	48	48	48	24	42	36
Classification	RMBL	IDBD	IDBD	RMBL	RMBL	RMBL
Panel B: Discrete Anal	ysis	1 51 666		1.50444	1 37444	1.10888
Positively Correlated	-1.84***	-1.51***	-1.41***	-1.58***	-1.3/***	-1.19****
$PE \times Small PE , \delta^u$	(0.32)	(0.29)	(0.31)	(0.26)	(0.19)	(0.21)
Positively Correlated	2.28***	1.91***	2.11***	1.39***	1.16***	1.36***
PE, v^d	(0.25)	(0.21)	(0.22)	(0.19)	(0.14)	(0.15)
		(, ,	. ,	,		
Small $ PE , \beta^d$	1.10***	0.56***	0.51***	0.79***	0.64***	0.54***
1 104	(0.20)	(0.19)	(0.20)	(0.16)	(0.13)	(0.14)
		(,	0.0			. ,
Observations	791	918	826	1,087	1,846	1,537
Number of Subject	48	48	48	24	42	36
Classification	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL
Test: $\gamma^d + \delta^d$	0.433**	0.401*	0.694***	-0.196	-0.214	0.170
	(0.22)	(0.2)	(0.22)	(0.17)	(0.13)	(0.15)
E (Median of \mathcal{E}_i)	0.782	0.508	0.489	1.182	2.568	2.006

Note: Logit estimates fit for panel data with subject level fixed effect PE stands for prediction error, i.e., $PE = p_t - p_t^*$. *** p<0.01, ** p<0.05, * p<0.1.

Main Results: Split Sample

Table A.7: $\frac{dY_{i,t+1,t}}{dR_{i,t,t-1}}$ in Positive Feedback Market: Split Sample

Study and Description	LtFE in Positive and Negative Feedback Market / Bao et al. (2012), JEDC, Positive Feedback Markets			Theo	Theory of Mind (ToM) / Bao et al (2024), JEBO				vs. LtOE ve / Bao et 2017), EJ	Speculator vs. Supplier in Housing Market / Bao and Hommes (2019), JEDC		
Treatment	$REE = 56, 1 \le t \le 20$	REE = 41, $21 \le t \le 43$	$REE = 62, 44 \le t \le 65$	High- ToM	Medium High ToM	Medium Low ToM	Low- ToM	LtFE	LtFE+LtOE Both	No Supplier	Low PES	High PES
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Panel A: Error Smaller t Positively Correlated PE	han Subject-l 0.50** (0.21)	Level Median (5 0.71*** (0.19)	Small Error = 0.71*** (0.20)	1) 1.01*** (0.09)	1.15*** (0.09)	1.30*** (0.09)	1.02*** (0.09)	0.81*** (0.12)	0.59*** (0.12)	1.06*** (0.19)	2.24*** (0.17)	2.16*** (0.14)
Observations Number of Subject	433 48	486 48	473 47	2,264 96	2,275 96	2,308 96	2,266 96	1,152 48	1,150 48	573 24	1,058 45	1,221 54
Panel B: Error Larger th	an or Equal	to Subject-Leve	l Median (Sm	all Error =	0)							
Positively Correlated PE	1.78*** (0.24)	1.12*** (0.20)	1.81*** (0.24)	2.08*** (0.10)	1.90*** (0.10)	1.96*** (0.10)	1.93*** (0.10)	1.62*** (0.14)	1.80*** (0.14)	2.07*** (0.25)	4.31*** (0.38)	3.89*** (0.24)
Observations Number of Subject	419 48	567 48	501 48	2,294 96	2,301 96	2,264 96	2,285 96	1,094 48	1,119 48	565 24	1,084 45	1,292 54

Note: Logit estimates fit for panel data with subject level fixed effect. PE stands for prediction error, i.e., $PE = p_t - p_t^*$. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A.8:	$\frac{dY_{i,t+1,t}}{dR_{i,t,t-1}}$	in	Negative	Feedback	Market:	Split	Sample
------------	-------------------------------------	----	----------	----------	---------	-------	--------

Study and Description	LtFE	in Positive and	Negative	LtFE vs. LtOE Negative /				
	Feed	back Market / B	ao et al.	Bac	et al. (2013), EER		
		(2012), JEDC	,					
	Neg	ative Feedback M	Markets					
Treatment	REE = 56,	REE = 41,	REE = 62,	LtFE	LtFE+Lt	LtFE+LtOE		
	$1 \le t \le$	$21 \le t \le 43$	$44 \le t \le 65$		OE	Either		
	20				Both			
	(13)	(14)	(15)	(16)	(17)	(18)		
Panel A: Error Smaller	than Subject	-Level Median (Small Error = 1)				
Positively Correlated	0.43*	0.39*	0.73***	-0.22	-0.20	0.19		
PE	(0.23)	(0.21)	(0.22)	(0.17)	(0.13)	(0.15)		
Observations	376	383	358	553	902	745		
Number of Subject	43	41	41	24	42	36		
Panel B: Error Larger (han or Equa	l to Subiect-Lev	el Median (Sma	ll Error = 0	,			
Positively Correlated	2.43***	1.93***	2.28***	1.41***	1.19***	1.35***		
PE	(0.28)	(0.22)	(0.25)	(0.20)	(0.14)	(0.16)		
Observations	401	532	457	534	944	792		
Number of Subject	47	48	48	24	42	36		
Matas Logit actimates fit	f	mailely multiple at Long	-1 Court offerst D	E stands for	and Cathon a	DE -		

Note: Logit estimates fit for panel data with subject level fixed effect. PE stands for prediction error, i.e., PE = $p_t - p_t^*$. *** p<0.01, ** p<0.05, * p<0.1.

finding

Estimated Continuous Learning Speed

Estimated Continuous Learning Rate — the probability that subject to increase (decrease) G when the error term in the most recent two periods are positively (negatively) correlated — increases when prediction error is larger

•
$$\frac{dY_{i,t+1,t}}{dR_{i,t,t-1}} = +f(E_{i,t}) = -f(SE_{i,t})$$

- Estimated Continuous Learning Speed the magnitude of increment (decrement) in G when error term in the most recent periods are positively (negatively) correlated — increases when prediction error is larger
 - not predicted in ADA, RMBL, or IDBD

Same testable hypothesis, but with different interpretation

$$\Delta G_{i,t+1,t} = \sum_{j=1}^{N} D_{ij} \alpha_i^{\mathsf{c}} + \beta^{\mathsf{c}} E_{i,t} + \gamma^{\mathsf{c}} R_{i,t,t-1} + \delta^{\mathsf{c}} (E_{i,t} \times R_{i,t,t-1}) + \epsilon_{i,t} \qquad (8)$$

$$\Delta G_{i,t+1,t} = \sum_{j=1}^{N} D_{ij} \alpha_i^d + \beta^d \mathsf{SE}_{i,t} + \gamma^d R_{i,t,t-1} + \delta^d (\mathsf{SE}_{i,t} \times R_{i,t,t-1}) + \epsilon_{i,t} \quad (9)$$

Finding 4: The results on estimated binary estimated continuous learning speed in RMBL can be extended to estimated continuous estimated continuous learning speed.

When conducting analyses that are robust to outliers, we find evidence that the estimated continuous estimated continuous learning speed—the increment in the magnitude of adaptive response with regard to the positive correlation of the error term—also increases when there is a larger absolute prediction error.

Estimated Continuous Learning Speed: OLS Pooled

Table A.9: $\frac{d\Delta G_{i,t+1,t}}{dR_{i,t,t-1}}$ in Positive Feedback Market

Study and Description	LtFE in Feedback	Positive and Ne Market / Bao et : Sitive Feedback	egative al. (2012), <i>Markets</i>	Theo	Theory of Mind (ToM) / Bao et al (2024), JEBO			LtFE Positiv al. (2	vs. LtOE /e / Bao et 017), EJ	Speculator vs. Supplier in Housing Market / Bao and Hommes (2019), JEDC			
Treatment	REE = 56,	REE = 41,	REE = 62,	High-	Medium	Medium	Low-	LtFE	LtFE+LtOE	No	Low PES	High PES	
	$1 \le t \le 20$	$21 \le t \le 43$	$44 \le t \le 65$	ToM	High	Low	ToM		Both	Supplier			
Model	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	
Band A. Cantinuan Am	a baarla												
Panel A: Continuous An Positivaly Correlated	7 86**	2 25***	2 20	1.16**	0.15***	0.50***	0.17**	26 77**	0.66***	2 42 ***	0.14	0.14	
$PE \times PE \delta^c$	(3.65)	(0.63)	(2.34)	(0.49)	(0.03)	(0.20)	(0.07)	(12.86)	(0.22)	(0.30)	(0.13)	(0.14)	
11.7 [11],0	(5.05)	(0.05)	(2.54)	(0.47)	(0.05)	(0.20)	(0.07)	(12.00)	(0.22)	(0.50)	(0.15)	(0.14)	
Positively Correlated	-0.68	2.93**	5.23	-2.80	10.71***	4.87	6.01**	-25.87*	8.60***	-11.62	8.69***	5.14***	
PE, γ^{c}	(1.85)	(1.37)	(3.65)	(6.80)	(2.30)	(3.99)	(2.67)	(13.94)	(3.08)	(10.26)	(2.64)	(0.74)	
$ PE , \beta^c$	-4.85	-1.41**	-1.85	-1.01**	-0.04*	-0.15*	-0.04	-26.53**	-0.32	0.22	0.10	-0.12	
	(3.22)	(0.61)	(1.95)	(0.50)	(0.02)	(0.08)	(0.04)	(13.10)	(0.22)	(0.24)	(0.12)	(0.12)	
Oheenstiene	804	1.077	004	4.509	4 600	4 504	4 500	2 292	3 202	1.162	2.160	2 596	
P courred	0.06	0.03	0.01	4,598	4,590	0.04	4,590	0.27	0.30	0.42	2,100	2,560	
Number of Subject	48	49	48	0.09	0.01	0.04	0.00	48	48	24	45	54	
Classification	RMBI	RMBI	40	RMBI	RMBI	RMBI	RMBI	RMBI	RMBI	RMBI	IDBD	IDBD	
Panel B: Discrete Analy	sis												
Positively Correlated	-3.32*	0.07	4.30	-10.72	-4.08	-11.65	-10.63	-5.84	-4.27	9.90	2.36	0.03	
$PE \times Small PE , \delta^d$	(1.75)	(2.08)	(6.06)	(9.25)	(3.46)	(8.64)	(14.69)	(6.03)	(3.69)	(7.61)	(1.82)	(1.07)	
Positively Correlated	5.16***	4.70**	5.12*	19.72***	15.17***	20.01***	15.97**	5.25	16.71***	21.47	5.42***	5.34***	
PE, γ^{a}	(1.13)	(1.81)	(2.56)	(5.86)	(2.43)	(4.18)	(7.44)	(3.36)	(5.33)	(13.36)	(0.69)	(0.53)	
Small $ PE , \beta^{u}$	2.17	-0.09	-2.85	9.83	2.16	5.33	8.67	5.10	6.74	-20.46	-2.09	-0.43	
	(1.84)	(2.11)	(4.77)	(8.71)	(3.63)	(7.11)	(14.55)	(5.97)	(6.12)	(16.15)	(1.65)	(0.72)	
Observations	894	1.077	994	4,598	4,590	4,594	4,590	2.283	2.302	1.152	2.160	2,586	
R-squared	0.02	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.01	0.01	0.03	0.05	
Number of Subject	48	48	48	96	96	96	96	48	48	24	45	54	
Classification	IDBD	IDBD	ADA	IDBD	IDBD	IDBD	IDBD	ADA	IDBD	ADA	IDBD	IDBD	

Note: Subject level fixed effects OLS model with cluster-robust standard error for panels nested within subject level. PE stands for prediction error, i.e., $PE = p_t - p_t^*$. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A.10: $\frac{d\Delta G_{i,t+1,t}}{dR_{i,t,t-1}}$ in Positive Feedback Market

Study and Description	LtFE in Positive and Negative LtFE vs. LtOE Negative / Bao Feedback Market / Bao et al. al. (2013), EER (2012), JEDC,					
	Neg	ative Feedback	Markets			
Treatment	REE = 56,	REE = 41,	REE = 62,	LtFE	LtFE+LtO	LtFE+LtO
	$1 \le t \le$	$21 \le t \le 43$	$44 \le t \le 65$		E	E
	20				Both	Either
Model	(13)	(14)	(15)	(16)	(17)	(18)
Panel A: Continuous A	nalveie					
Positively Correlated	-0.01	9.00	0.10	1 34	0.15**	0.19
$PE \times PE \delta^c$	(0.13)	(7.09)	(0.16)	(1.06)	(0.07)	(0.15)
1 0 -	()	()	(()	(()
Positively Correlated	2.21***	-24.57	3.16**	0.18	0.18	0.27
PE, γ^c	(0.79)	(21.01)	(1.26)	(2.78)	(0.44)	(0.63)
$ PE , \beta^c$	-0.07*	-0.33	-0.14	0.07	-0.12	-0.06
	(0.04)	(0.22)	(0.16)	(0.23)	(0.10)	(0.04)
Obcarrations	2 586	910	1.099	008	1.150	2.012
Doservations P. coupred	2,380	910	1,088	998	0.01	2,012
Number of Subject	54	48	48	48	24	42
Classification	IDBD	ADA	IDBD	ADA	RMBI	ADA
Childhon	IDBD	ADA	IDDD	<i>ius</i> ii	Rande	AbA
Panel B: Discrete Anal	lysis					
Positively Correlated	-0.92	-41.25	-1.45	-0.44	-1.42**	-1.85**
$PE \times Small PE , \delta^d$	(0.62)	(33.50)	(0.96)	(3.06)	(0.55)	(0.71)
Basitische Completed	2.74888	22.05	2.05888	2 (1888	1.40888	1 70444
rositively correlated	2.74***	25.05	3.93***	2.01000	1.49000	1.78***
РЕ, γ.	(0.63)	(18.25)	(1.12)	(0.73)	(0.50)	(0.42)
Small $ PE , \beta^d$	2.10***	3.89	0.80	-1.24	1.39**	1.27**
1 10	(0.71)	(2.44)	(1.12)	(2.96)	(0.57)	(0.56)
	()	,	,	(00)	((
Observations	910	1,088	998	1,150	2,012	1,726
R-squared	0.04	0.01	0.02	0.00	0.00	0.01
Number of Subject	48	48	48	24	42	36
Classification	IDBD	ADA	IDBD	IDBD	RMBL	RMBL

Construction in the problem of the

Estimated Continuous Learning Speed: OLS Split Sample

Table A.11: $\frac{d\Delta \mathcal{G}_{i,t+1,t}}{dR_{i,t,t-1}}$ in Negative Feedback Market

Study and Description	LtFE in Positive and Negative Feedback Market / Bao et al. (2012), JEDC, Positive Feedback Markets			Theo	heory of Mind (ToM) / Bao et al (2024), JEBO			LtFE vs. LtOE Positive / Bao et al. (2017), EJ		Speculator vs. Supplier in Housing Market / Bao and Hommes (2019), JEDC		
Treatment	REE = 56, $1 \le t \le 20$	$\begin{array}{l} \text{REE} = 41, \\ 21 \leq t \leq 43 \end{array}$	$REE = 62, 44 \le t \le 65$	High- ToM	Medium High ToM	Medium Low ToM	Low- ToM	LtFE	LtFE+LtOE Both	No Supplier	Low PES	High PES
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Panel A: Error Smaller the Positively Correlated PE	han Subject-I 1.83 (1.66)	evel Median (8 4.46** (2.07)	5mall Error = 9.56* (4.90)	1) 10.18** (4.32)	11.82*** (3.11)	9.49 (5.73)	8.45 (5.72)	0.33 (1.72)	10.70** (4.56)	31.68 (21.10)	7.56*** (1.81)	5.40*** (0.97)
Observations	459	502	490	2,290	2,281	2,318	2,275	1,174	1,173	583	1,069	1,283
R-squared	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.03	0.04
Number of Subject	48	48	48	96	96	96	96	48	48	24	45	54
Panel B: Error Larger th Positively Correlated PE	an or Equal (5.15*** (1.28)	o Subject-Leve 4.57** (1.73)	Median (Sm 5.42*** (1.96)	all Error = 17.90*** (5.37)	0) 14.99*** (2.46)	17.95*** (3.65)	15.27** (7.15)	5.46 (3.31)	17.45*** (5.79)	26.63 (17.88)	5.15*** (0.63)	5.22*** (0.52)
Observations	435	575	504	2,308	2,309	2,276	2,315	1,109	1,129	569	1,091	1,303
R-squared	0.05	0.02	0.02	0.01	0.03	0.01	0.00	0.00	0.01	0.00	0.02	0.07
Number of Subject	435	575	504	2,308	2,309	2,276	2,315	1,109	1,129	569	1,091	1,303

Note: Subject level fixed effects OLS model with cluster-robust standard error for panels nested within subject level. PE stands for prediction error, i.e., $PE = p_t - p_t^{2, ***} p < 0.01, ** p < 0.05, ** > 0.01, ** > 0$

Table A.12:
$$\frac{d\Delta G_{i,t+1,t}}{dR_{i,t,t-1}}$$
 in Positive Feedback Market: Split Sample

Study and Description	LtFE Feed <i>Neg</i>	in Positive and back Market / B (2012), JEDC ative Feedback M	Negative sao et al. , Markets	LtFE vs. LtOE Negative / Bao et al. (2013), EER						
Treatment	REE = 56,	REE = 41,	REE = 62,	LtFE	LtFE+Lt	LtFE+LtOE				
	$1 \leq t \leq 1$	$21 \le t \le 43$	$44 \le t \le 65$		OE	Either				
	20				Both					
	(13)	(14)	(15)	(16)	(17)	(18)				
Panel A: Error Smaller Positively Correlated	r than Subject 1.79**	-Level Median (-16.65	(Small Error = 1 2.16** (0.02)	1) 1.95	0.14	0.01				
ΓE.	(0.85)	(14.24)	(0.92)	(2.78)	(0.02)	(0.03)				
Observations	474	509	486	590	1,023	872				
R-squared	0.02	0.00	0.01	0.00	0.00	0.00				
Number of Subject	48	48	48	24	42	36				
Panel B: Error Larger than or Equal to Subject-Level Median (Small Error = 0)										
Positively Correlated	2.75***	27.00	4.10***	2.41***	1.41***	1.83***				
PE	(0.70)	(23.14)	(1.11)	(0.78)	(0.48)	(0.46)				
Observations	436	579	512	560	989	854				
R-squared	0.05	0.01	0.03	0.02	0.01	0.02				
Number of Subject	48	48	48	24	42	36				

Note: Subject level fixed effects OLS model with cluster-robust standard error for panels nested within subject level. PE stands for prediction error, i.e., $PE = p_t - p_t^*$. *** p < 0.01, ** p < 0.05, * p < 0.1.

Figure A.1: Coefficients of $\frac{d\Delta G_{(i,t+1,t)}}{dR_{(i,t,t-1)}}$ with regards to absolute prediction error in 18 experiments, separated by its absolute prediction error with regards to individual median.

Figure A.2: Coefficients of $\frac{d\Delta G_{(i,t+1,t)}}{dR_{(i,t,t-1)}}$ in sample where $\frac{dY_{(i,t+1,t)}}{dR_{(i,t,t-1)}} > 0$ with regards to absolute prediction error in 18 experiments, separated by its absolute prediction error with regards to individual median.

- Increment of adaptive response with regard to a positively correlated error
- … could be up to 30 units on average (with a standard error of 20 units) when the absolute prediction error is only 4 units.

Robust regression to outliers: M estimator (Huber, 1973)

- Different results from OLS
- ▶ When pooling all data, both continuous analysis ($\delta^c = 0.05$, p < 0.01) and discrete analysis ($\delta^d = -0.22$, p < 0.05) provide evidence supporting RMBL.
 - when the absolute prediction error is one unit larger, the increment in G with regard to the positively correlated error is 0.05 higher;
 - when the error is larger than the median, the increment in G with regard to the positively correlated error is 0.22 units higher — compared to if the error is smaller than the median.

- Splitting the sample according to the experiment
 - subjects in 15 out of the 18 experiments can be explained by the use of RMBL from at least one of the analyses.
- the evidence for RMBL (satisficing) is strong in all analyses, except for the discrete analysis in the positive-feedback market.
 - due to the limited variation in the explanatory variable in the discrete analysis.
 - X = 0 or 1
 - Y: much larger variability (p < 0.01) in the absolute ΔG in the positive feedback market ($\sigma(|\Delta G_{positive}|) = 94.20$) compared to that in the negative feedback market ($\sigma(|\Delta G_{negative}|) = 62.95$).

Estimated Continuous Learning Speed: M-estimator, Pooled

Table A.13: $\frac{d\Delta {\cal G}_{i,t+1,t}}{d{\cal R}_{i,t,t-1}}$ in Positive Feedback Market

Study and	LtFE in Positive and Negative		Theory of Mind (ToM) / Bao et al				LtFE	vs. LtOE	Speculator vs. Supplier in				
Description	Feedback	Market / Bao et	al. (2012),		(2024),	JEBO		Positi	ve / Bao et	Housing Market / Bao and			
	JEDC, P	ositive Feedback	Markets					al. (2	2017), EJ	Hom	nes (2019), JI	EDC	
Treatment	REE = 56,	REE = 41,	REE = 62,	High-	Medium	Medium	Low-	LtFE	LtFE+LtOE	No	Low PES	High PES	
	$1 \le t \le 20$	$21 \le t \le 43$	$44 \le t \le 65$	ToM	High	Low	ToM		Both	Supplier			
Model	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	
Panel A: Continuous Ar	alysis												
Positively Correlated	2.20***	2.33***	4.48***	0.11***	0.08***	0.08***	0.02**	0.53*	0.52***	0.11	0.01	0.11***	
$PE \times PE , \delta^c$	(0.40)	(0.64)	(1.18)	(0.03)	(0.02)	(0.02)	(0.01)	(0.27)	(0.02)	(0.06)	(0.02)	(0.03)	
Positively Correlated	0.51*	1.03**	1.22	2 93***	4 87***	4 61***	3 88***	0.52	0.21	7 84***	3 20***	3 27***	
DE	(0.28)	(0.51)	(0.87)	(0.40)	(0.57)	(0.44)	(0.27)	(0.22)	(0.29)	(0.80)	(0.22)	(0.10)	
гп, ү	(0.28)	(0.51)	(0.87)	(0.49)	(0.57)	(0.44)	(0.57)	(0.52)	(0.28)	(0.89)	(0.32)	(0.19)	
PEL BC	-2.07***	-0.78	-3.42***	-0.04**	-0.02	-0.02*	-0.00	-0.34*	-0.18***	-0.03***	-0.01	-0.11***	
1 J, P	(0.39)	(0.64)	(1.17)	(0.02)	(0.01)	(0.01)	(0.00)	(0.17)	(0.02)	(0.01)	(0.02)	(0.03)	
	()	()		()	,	()	()		()	(,	,	(,	
Observations	894	1,077	994	4,598	4,590	4,594	4,590	2,283	2,302	1,152	2,160	2,586	
Number of Subject	48	48	48	96	96	96	96	48	48	24	45	54	
Classification	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL	IDBD	RMBL	IDBD	IDBD	RMBL	
Panel B: Discrete Analy	sis												
Positively Correlated	-0.94*	2.18*	-1.84	0.18	0.75	1.02	0.62	0.12	-0.51	-1.28*	0.14	-0.30	
$PE \times Small PE , \delta^d$	(0.49)	(1.22)	(1.51)	(0.70)	(0.90)	(0.83)	(0.62)	(0.19)	(0.39)	(0.75)	(0.32)	(0.24)	
Positively Correlated	2 03***	1.40**	5 29***	4 06***	5 77***	5 23***	4 14***	1.07***	2 15***	4 70***	3 17***	3 67***	
PE v ^d	(0.21)	(0.57)	(0.87)	(0.26)	(0.46)	(0.20)	(0.21)	(0.11)	(0.24)	(0.61)	(0.25)	(0.18)	
, /	(0.51)	(0.57)	(0.85)	(0.50)	(0.40)	(0.59)	(0.51)	(0.11)	(0.24)	(0.01)	(0.23)	(0.18)	
Small $ PE , \beta^d$	0.92**	-1.74	2.25*	-0.22	-0.67	-0.65	-0.61	-0.13	0.85***	1.08	0.02	0.23	
	(0.46)	(1.06)	(1.32)	(0.64)	(0.79)	(0.68)	(0.53)	(0.15)	(0.27)	(0.74)	(0.33)	(0.22)	
	(· · ·)			()	(,	()	()	(,	(· · ·)	()	()	. ,	
Observations	894	1,077	994	4,598	4,590	4,594	4,590	2,283	2,302	1,152	2,160	2,586	
R-squared	48	48	48	96	96	96	96	48	48	24	45	54	
Classification	IDBD	IDBD	IDBD	IDBD	IDBD	IDBD	IDBD	IDBD	IDBD	IDBD	IDBD	IDBD	

Note: Subject level fixed effects robust estimator fits for M regression models with cluster-robust standard error for panels nested within subject level. PE stands for prediction error, i.e., $PE = p_c - p_{c}^{+} + ** p < 0.01$, ** p < 0.05, * p < 0.1.

Table A.14: $\frac{d\Delta G_{i,t+1,t}}{dR_{i,t,t-1}}$ in Negative Feedback Market

Study and	LtFE	in Positive and	Negative	LtFE vs. LtOE Negative / Bao et						
Description	Feed	back Market / B	ao et al.	a	al. (2013), EER					
		(2012), JEDC	,							
	Neg	ative Feedback M	Aarkets	-						
Treatment	REE = 56,	REE = 41,	REE = 62,	LtFE	LtFE+LtO	LtFE+LtO				
	$1 \le t \le$	$21 \le t \le 43$	$44 \le t \le 65$		E	E				
	20				Both	Either				
Model	(13)	(14)	(15)	(16)	(17)	(18)				
Panal A: Continuous A	nabreie									
Positively Correlated	0 13***	0.01	0.01	0.23***	0.08***	0.09***				
$PE \times PE \delta^c$	(0.03)	(0.01)	(0.00)	(0.07)	(0.01)	(0.02)				
11,7 11,0	(0.05)	(0.01)	(0.00)	(0.07)	(0.01)	(0.02)				
Positively Correlated	0.66***	0.57***	0.66***	-0.18	-0.05	0.18				
PE, γ^{c}	(0.15)	(0.15)	(0.14)	(0.19)	(0.11)	(0.12)				
$ PE , \beta^c$	-0.05***	0.00	-0.01*	-0.05***	-0.02***	-0.02***				
	(0.01)	(0.01)	(0.00)	(0.01)	(0.01)	(0.01)				
Observations	910	1,088	998	1,150	2,012	1,726				
R-squared	48	48	48	24	42	30				
Classification	RMBL	IDBD	IDBD	RMBL	RMBL	RMBL				
Panel B: Discrete Anal	veie									
Positively Correlated	-0.82***	-0.48***	-0.64***	-0.95***	-0.79***	-0.61***				
$PE \times Small PE , \delta^d$	(0.22)	(0.16)	(0.10)	(0.25)	(0.15)	(0.17)				
Positively Correlated	1.31***	0.82***	0.97***	0.72***	0.62***	0.74***				
PE, γ^d	(0.16)	(0.12)	(0.11)	(0.17)	(0.10)	(0.11)				
Small $ PE , \beta^d$	0.70***	0.22**	0.14*	0.42***	0.44***	0.31***				
	(0.15)	(0.10)	(0.08)	(0.14)	(0.08)	(0.08)				
Observations	910	1.088	008	1.150	2.012	1 726				
R-sourced	48	48	48	24	42	36				
Classification	RMBL	RMBL	RMBL	RMBL	RMBL	RMBL				

Note: Subject level fixed effects robust estimator fits for M regression models with cluster robust standard error for panels nested within subject level. PE stands for prediction error, i.e., $PE = p_t - p_t^* * ** p < 0.01$, ** p < 0.05, * p < 0.1.

Estimated Continuous Learning Speed: M-estimator, Split Sample

Table A.15: $\frac{d\Delta G_{i,t+1,t}}{dR_{i,t,t-1}}$ in Positive Feedback Market: Split Sample

Study and Description	LtFE in Positive and Negative Feedback Market / Bao et al. (2012), JEDC, Positive Feedback Markets			Theo	Theory of Mind (ToM) / Bao et al (2024), JEBO			LtFE vs. LtOE Positive / Bao et al. (2017), EJ		Speculator vs. Supplier in Housing Market / Bao and Hommes (2019), JEDC		oplier in Bao and JEDC
Treatment	REE = 56, $1 \le t \le 20$	$\begin{array}{l} \text{REE} = 41, \\ 21 \leq t \leq 43 \end{array}$	$REE = 62, 44 \le t \le 65$	High- ToM	Medium High ToM	Medium Low ToM	Low- ToM	LtFE	LtFE+LtOE Both	No Supplier	Low PES	High PES
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Panel A: Error Smaller the Positively Correlated PE	han Subject-l 1.35*** (0.44)	Level Median (5 3.84*** (1.30)	Small Error = 4.28*** (1.43)	1) 5.27*** (0.85)	7.29*** (0.93)	7.23*** (0.89)	5.65*** (0.69)	1.27*** (0.22)	2.03*** (0.50)	3.86*** (0.77)	3.76*** (0.28)	3.59*** (0.25)
Observations	459	502	490	2.290	2.281	2.318	2.275	1.174	1.173	583	1.069	1.283
R-squared	48	48	48	96	96	96	96	48	48	24	45	54
Panel B: Error Larger th	an or Equal	to Subject-Leve	l Median (Sm	all Error =	0)							
Positively Correlated PE	1.88***	1.38***	4.66***	3.22***	4.81***	4.28***	3.34***	0.97***	1.94***	4.46***	2.75***	3.46***
	(0.28)	(0.48)	(0.74)	(0.27)	(0.40)	(0.31)	(0.25)	(0.10)	(0.22)	(0.65)	(0.21)	(0.17)
Observations	435	575	504	2,308	2,309	2,276	2,315	1,109	1,129	569	1,091	1,303
R-squared	48	48	48	96	96	96	96	48	48	24	45	54

Note: Subject level fixed effects robust estimator fits for M regression models with cluster-robust standard error for panels nested within subject level. PE stands for prediction error, i.e., PE = p_t - p_t^{*}, *** p<0.01, ** p<0.05, * p<0.1.

Table A.16: $\frac{d\Delta G_{i,t+1,t}}{dR_{i,t,t-1}}$ in Negative Market: Split Sample

Study and	LtFE	in Positive and	Negative	LtFE vs. LtOE Negative /				
Description	Feed	back Market / B	ao et al.	Bao et al. (2013), EER				
		(2012), JEDC	,					
	Neg	ative Feedback M						
Treatment	REE = 56,	REE = 41,	REE = 62,	LtFE	LtFE+Lt	LtFE+LtOE		
	$1 \le t \le$	$21 \le t \le 43$	$44 \le t \le 65$		OE	Either		
	20				Both			
	(13)	(14)	(15)	(16)	(17)	(18)		
Panel A: Error Smalle	r than Subjec	t-Level Median (Small Error = 1	l)				
Positively Correlated	0.47**	0.29*	0.34**	-0.24	-0.14	0.14		
PE	(0.20)	(0.16)	(0.15)	(0.18)	(0.15)	(0.15)		
Observations	474	509	486	590	1,023	872		
R-squared	48	48	48	24	42	36		
Panel B: Error Larger	than or Equa	l to Subject-Lev	el Median (Sma	ll Error = 0)			
Positively Correlated	1.35***	0.82***	1.02***	0.73***	0.59***	0.69***		
PE	(0.17)	(0.11)	(0.11)	(0.17)	(0.09)	(0.11)		
Observations	436	579	512	560	989	854		
R-squared	48	48	48	24	42	36		

Note: Subject level fixed effects robust estimator fits for M regression models with cluster-robust standard error for panels nested within subject level. PE stands for prediction error, i.e., $PE = p_t - p_t^*$.*** p<0.01, ** p<0.05, * p<0.1.

Figure A.3: M-estimator: coefficients of $d\Delta G_{i,t+1,t}/dR_{i,t,t-1}$ with respect to absolute prediction error in the sample in 18 experiments, separated by its absolute prediction error with respect to individual median.

References I

- Bao, T., Dai, Y., and Duffy, J. (2022). Least squares learning? evidence from the laboratory. *SSRN Working Paper*.
- Bao, T., Duffy, J., and Hommes, C. (2013). Learning, forecasting and optimizing: An experimental study. *European Economic Review*, 61:186–204.
- Bao, T., Füllbrunn, S., Pei, J., and Zong, J. (2024). Reading the market? expectation coordination and theory of mind. *Journal of Economic Behavior & Organization*, 219:510–527.
- Bao, T. and Hommes, C. (2019). When speculators meet suppliers: Positive versus negative feedback in experimental housing markets. *Journal of Economic Dynamics and Control*, 107:103730.
- Bao, T., Hommes, C., and Makarewicz, T. (2017). Bubble formation and (in) efficient markets in learning-to-forecast and optimise experiments. *The Economic Journal*, 127(605):F581–F609.
- Bao, T., Hommes, C., Sonnemans, J., and Tuinstra, J. (2012). Individual expectations, limited rationality and aggregate outcomes. *Journal of Economic Dynamics and Control*, 36(8):1101–1120.
- Berrada, T., Bossaerts, P., and Ugazio, G. (2024). Investments and asset pricing in a world of satisficing agents. *Swiss Finance Institute Research Paper*, 24(05).

References II

- Bossaerts, P. (2018). Formalizing the function of anterior insula in rapid adaptation. *Frontiers in Integrative Neuroscience*, 12:61.
- d'Acremont, M. and Bossaerts, P. (2016). Neural mechanisms behind identification of leptokurtic noise and adaptive behavioral response. *Cerebral Cortex*, 26(4):1818–1830.
- Danckert, J., Stöttinger, E., Quehl, N., and Anderson, B. (2012). Right hemisphere brain damage impairs strategy updating. *Cerebral Cortex*, 22(12):2745–2760.
- Evans, G. W. and Honkapohja, S. (2001). *Learning and expectations in macroeconomics*. Princeton University Press.
- Hommes, C. and Sorger, G. (1998). Consistent expectations equilibria. *Macroeconomic Dynamics*, 2(3):287–321.
- Huber, P. J. (1973). Robust regression: asymptotics, conjectures and monte carlo. *The annals of statistics*, pages 799–821.