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Abstract

This paper establishes a connection between cognitive noise (Enke and Graeber, 2023) and the

level of contribution in the public goods game. We argue that cognitive noise complements,

rather than replaces, taste-based social preference to explain the contribution decision. Both

correlational and causal data supports the notion that cognitive uncertainty is positively correl-

ated with contribution in the public goods game at the aggregate level, or cognitive uncertainty

led people to behave as if they are more cooperative. And the result is robust when removing

strategic uncertainty. However, there is heterogeneity, where cognitive noise is negatively cor-

related with the contribution level of some participants at an economically significant extent.

These findings suggest the significance of only considering contribution decisions that exceed a

certain cognitive certainty threshold in a public goods game if they are to be taken at face value.

Further, our experimental results also demonstrate that a cooperative advice from the Gener-

ative Pre-trained Transformer (hereafter referred to as “GPT”) reduces cognitive uncertainty

for all participants assist individual in either gaining a better understanding of their true social

preference, or translating their true social preferences into contribution actions that maximize

their utility as the game repeats. The impact of the advice, however, does not seem to depend

on whether or not the participants are informed the advice was made by GPT.
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1 Introduction

The public goods game (Isaac et al., 1984; Isaac et al., 1994; 1998) has been widely used to study

cooperative behavior in groups when players have incentives to free ride. In the public goods

game, individuals can contribute money to a public account that produces benefits shared by all

group members, including themselves. When there is no opportunity for punishment or reciprocity

concerns, experimental results show that the contribution rate decreases from 30% to 40% to 10% to

20% as the game repeats. Previous studies usually use social preferences, e.g., altruism, inequality

aversion, indirect reciprocity to explain why people cooperate even when zero contribution is their

monetary payoff maximization action (Fehr and Fischbacher, 2003).

In this paper, we hypothesize that the cognitive uncertainty1 that is recently defined by Enke

and Graeber (2023) could complement the taste-based social preference to together explain the

contribution decision in public goods game.

Our approach is similar as how Enke et al. (2023) recently apply cognitive noise to intertemporal

choice and explains the various empirical regularities in intertemporal choice2. In their theoretical

and experimental study, the cognitive noisiness induces a “compression effect” that make people

behave as if they treat different time delays to some degree alike, which leads to an inelasticity of

decisions but not replaced the taste-based present bias. More specifically, cognitive uncertainty rep-

resents people’s internal uncertainty about their utility-maximizing action, assuming that people

are aware that they may make mistakes in their decisions, or in other words, how “good” their

decision represents their true preference3. By constructing a Bayesian updating model and con-

ducting a series of experiments that measure and manipulate cognitive uncertainty, they prove their

hypothesis that people make decisions using a weighted function between their true time preference

and a cognitive default or an ignorance prior. When subjects are more cognitively uncertain about

a decision, more weight is assigned to the cognitive default (e.g., the middle of the response scale),

1The cognitive uncertainty here is similar to the noise proposed in Burton-Chellew and West (2013), which suggest
that in the context of a public goods game, it could result from errors, boredom, learning, exploration, fluctuating
preferences, or evolutionary constraints. The cognitive uncertainty is, however, different from confusion in Burton-
Chellew et al. (2016), where they argue that contribution in public goods game is from players’ confusion that is
defined as their failure to understand the nature of the game. In other words, confusion there is the failure to
understand that contributing zero endowment is the payoff-maximization action that is unconditional on their social
preference. Recently, Wang et al. (2024) replicate the experiment in Burton-Chellew et al. (2016) with the only
difference to minimize confusion by providing participants with increased training, i.e., by telling participants the
correct answers to the 10 control questions. Their result refuted that in Burton-Chellew et al. (2016). Rather, their
result suggest that the cooperation is not pure artifact of confusion and supports the notion that choices in public
goods game reveal motivations such as adherence to social norm.
2The empirical regularities they explain using cognitive noise include present bias, hyperbolic discounting, and why
choices frequently violate transitivity.
3Note that the internal uncertainty here distinguishes them from external uncertainty that, in contrast, roots in the
environment, e.g., the risk of not receiving the payment. It also differentiates from the external outcome uncertainty
— the uncertainty about whether or not a decision will lead to a particular outcome. It further differentiates from the
impact uncertainty — an uncertainty about how badly others’ well-being will be impacted by the negative outcome.
Using an experiment, Kappes et al. (2018) find when the external outcome is more uncertain, people are less prosocial;
but when the impact of subjects’ action to opponent is more uncertain, people become more prosocial.
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resulting in observed decisions that deviate more significantly from their true time preference.

This paper contains 3 self-contained parts to link the concept of cognitive noise with the level of

contribution in public goods game. Our main idea is that cognitive noisiness leads to a distortion

on the taste-based social preference measured by the public goods, but not replace it. Despite

the many literatures investigating whether cooperation from public goods game stems from either

confusion or prosocial behavior, we believe our paper is the first that accepts the premise that people

can both possess prosocial preference, and be confused about the utility-maximizing decision that

best represents their true social preference.

In Part 1 of this paper, we hypothesize that subjects will become increasingly cognitively certain

about their decisions as the game repeats, due to experience and learning. Cognitive uncertainty can

arise from either unawareness of one’s true social preference, or uncertainty about the optimal action

to maximize utility given their social preference in a public goods game setting. Consequently,

subjects’ contribution levels in the later rounds of the game will deviate more from a cognitive

default that is at half of the response scale, as less weight is assigned to the cognitive default. To

test this hypothesis, we simply observe the correlational change in cognitive uncertainty as the game

repeats. Then, we examine whether the contribution rates stay closer to half of the endowment

at the beginning of the game while deviating more from the half-of-endowment-level at the later

rounds of the game.

The experimental result in Part 1 further allows us to ask how cognitive uncertainty would bias

one’s level of contribution, and in turn, bias the apparent social preference. In Part 2, and first

through a correlational study, we first observe whether cognitive noise makes people appear to be

more cooperative (less cooperative) on the aggregate level. This is done by comparing whether

individuals who are more cognitively uncertain contribute more (less) on average than those who

are cognitively certain about their decisions. Then, we determine the proportion of subjects where

cognitive noise makes them appear to be more cooperative (less cooperative), but in reality, they are

less cooperative (more cooperative), as they contribute less (more) when cognitive noise decreases.

In Appendix E, and as a causal study, we implement additional treatment arms in which we

complicate public goods game decision tasks by displaying the efficiency factor into a mathematical

equation to increase confusion (Enke et al., 2023; Andreoni, 1995). To prevent subjects taking

longer time to complete tasks which offset the effect of complexity, we also implement a time limit

of 25 seconds per contribution decision. We then observe whether the result from correlational

study holds in this causal study.

We conduct the cognitive noise experiments (Enke and Graeber, 2023) in the context of the

without-punishment public goods game of Fehr and Gächter (2000). There are a total of 10 periods

of the game in each part. In each period, each participant is endowed with 20 points, and they can

choose to contribute to a project with a multiplier of 1.6. The benefits from this project, 1.6 unit

for every unit of contribution, will be equally divided among the 4 group members. To rule out
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reciprocity concerns, participants are paired with different individuals in each period. Furthermore,

in order to mitigate the influence of inequality aversion, participants are only able to view their own

payoff, and a time limit of 10 seconds is enforced in each period to prevent them from calculating

the payoffs of others. To measure cognitive uncertainty, we include a cognitive uncertainty question

for each decision.

Our results demonstrate that only a cooperative advice from Generative Pre-trained Trans-

former (hereafter referred to as “GPT”) can assist individual in either gaining a better under-

standing of their true preference or translating their true preferences into contribution actions that

maximize their utility as the game repeats. The impact of the advice, however, does not seem to

depend on whether or not the participants are informed the advice was made by GPT, implying an

absence of GPT premium. By contrast, we fail to find a decreasing cognitive uncertainty as game

repeats in the context when subjects do not receive any advice before making decisions.

Further, we argue that cognitive noise complements, rather than replaces, taste-based social

preference to explain the contribution decision. Using both correlational and causal study, we find

that cognitive noise distorts the contribution decision that primarily reflects subjects’ true social

preference. Across all treatments, we observe that subjects assign more weight to the cognitive de-

fault (50% contribution of their endowment, implying a middle bias) when they are less cognitively

certain about their decisions, and therefore support the cognitive uncertainty hypothesis proposed

by Enke and Graeber (2023).

At the aggregate level, cognitive uncertainty leads individuals to contribute more to the public

account, which means that they may be less cooperative than what their decisions imply. We also

find heterogeneity among the participants in terms of the direction in which cognitive noise biases

their apparent social preference. While cognitive noise is positively correlated with the contribution

level of the majority of subjects, there is still a minority of subjects whose level of contribution

is negatively correlated with cognitive noise to the extent that is economically significant. In

other words, there are a minority of subjects in our experiment are in fact more cooperative,

while cognitive noise makes them appear to be less cooperative. These results suggest that when

researchers are interested in determining subjects’ true social preference, they should consider their

contribution decisions only when the corresponding cognitive uncertainty is below an acceptable

threshold.

As a robustness check and to address concerns that strategic uncertainty (Enke and Graeber,

1988; Gangadharan and Nemes, 2009) may be misinterpreted as part of the cognitive uncertainty

being measured, we design Experiment Robustness that disentangle the two types of uncertainty

in Appendix F. i) Strategic uncertainty, where they are unclear about their opponent’s types and,

consequently, their opponents’ contributions, and ii) Cognitive uncertainty, where participants are

unsure about their prosocial preference, or the utility-maximizing action in the public goods game

that represents their true preferences. We randomly assign a subset of subjects into the Full
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Information Treatment, so that they will always know the contribution of all other group members

before making their own decision. Meanwhile, they will always be paired with three other subjects

who do are not in the Full Information Treatment, and the other subjects do not know that they

are playing with a subject who can access to their contribution decision.

We find that when ruling out strategic uncertainty, the reported cognitive uncertainty is different

from zero at a statistically significant level. And the observation where subjects contribute more

when they are more cognitively uncertain still holds in this scenario.

Recent research shows that GPT outperforms humans in rationality in decision-making tasks

concerning risk, time, social, and food (Chen et al., 2023). With the increasing popularity of

online platforms for conducting economic experiments to elicit preferences, along with the growing

prevalence of GPT usage, concerns arise about the unbiasedness of the apparent preferences elicited

in online economic experiments. Specifically, in the absence of supervision, subjects may delegate

the decision to GPT instead of exerting cognitive effort and providing an answer that reflects their

true preferences. Fortunately, the recent experimental evidence from Bai et al. (2023) find that

individuals prefer employing AI to empower their judgements rather than entirely delegating the

decisions to AI.

In Study 3, we investigate the following questions: How does subjects’ contribution decision

change after being exposed to decisions from GPT, and how long does the effect sustain? Does

an exposure to GPT reduce subjects’ cognitive uncertainty regarding their contribution decisions

in a public goods game? Furthermore, does the extent where participants trust and adopt recom-

mendations depend on whether or not they are informed that the recommendations come from

GPT?

To answer these questions, we design two additional treatment group: Group Adviser and

Group GPT. Note that we adopt a between + within treatment design for all the treatments in

the main study of this paper4. All subjects are placed into groups of four and play for 20 rounds,

with a restart prior to Rounds 11. In Group Baseline, the two rounds of the game are exactly the

same. In contrast, participants in Group Adviser and Group GPT are provided with the decisions

from GPT before the new 10 rounds of the game. We explicitly inform them that these decisions

are from GPT in the Group GPT, and subjects are provided with a link directing them to the

Wikipedia page of GPT-3.5. However, we only mention that the decisions are collected from an

adviser in the Group Adviser. This allows us to observe how much subjects trust GPT compared

to an anonymous adviser.

Our experimental results support the hypothesis that subjects’ responses may be biased towards

GPT’s decisions in the absence of supervision during online experiments. However, the impact

4This means that whatever the treatment group subjects are allocated in, they will always play the standard public
goods game for the first 10 rounds. And the treatment is only imposed after the surprise restart of the game at round
11. See Table B.2 for details.
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form GPT is relatively short run and un-sustained for 10 rounds of the game. This finding is

consistent with the experimental evidence in Bai et al. (2023): Even if equipped with a punishment

system based on scoring the contribution behavior from AI or even real participants in the group,

high contributions will start to decay before the end of each of the 10 rounds of the game (See

Figure 1 in Bai et al., 2023 for details). But in the short run, whether they specifically bias

their decisions towards the explanation provided by GPT cannot be simply captured by changes in

cognitive uncertainty, at least in the context where GPT advises a cooperative contribution decision.

These findings suggest that future studies aiming to explore subjects’ preferences through online

experiments will need to conduct additional supervised laboratory experiments for robustness.

Meanwhile, we did not observe any significant and sustained difference between Group Adviser and

Group GPT in both cognitive uncertainty and contribution decision, indicating the absence of a

GPT premium. Our result provides a useful perspective on how AI-human interaction influences

human decision on the social context.

Our study is closely related to Andreoni (1995). They designed a lab experiment to separate

the hypothesis that the contribution in the public goods game is due to kindness, or simply the

result of errors or confusions. They calculated the percentage of contributions that fall into either

of these two categories (in the way lists on pp. 895 paragraph 1). As half of the cooperation

come from subjects who understand free-riding but still choose to cooperate, implying that they

belong to kindness category, they argue that there exists non trivial amount of people who pos-

sess a cooperative preference. Further, their experimental evidence concludes that the declining

contribution may due to frustrated attempts at kindness instead of learning.

Our paper is aligned with the literature that quantitatively captures confusion by employing the

cognitive uncertainty concept proposed by Enke and Graeber (2023). In other words, rather than

categorizing contribution behavior into pure kindness or pure confusion like they do, we accept the

premise that subjects can exhibit both qualities at the same time. And more importantly, we view

each contribution decision as a weighted function of the two qualities and focus on how confusion

can influence their observed social preferences, i.e., contribution decision. Our results, although

derived from this different approach, support the findings of Andreoni (1995). Similar to their

conclusion, we find that cognitive uncertainty affects the contribution decision in the public goods

game, but it cannot solely explain it. Specifically, there exists a non-trivial number of subjects

whose confusion or cognitive uncertainty makes them appear to be less cooperative or less kind,

suggesting that they are inherently more cooperative than what is observed.

We contribute to the recent literature on cognitive noise experiments, which explore the concept

of cognitive uncertainty and its relationship with various empirical regularities, including risk, am-

biguity, belief updating, survey forecasts of economic variables (Enke and Graeber, 2023), inter-

temporal choice (Enke et al., 2023), and overconfidence (Amelio, 2022).

Further, we contribute to the literature on public goods experiments (e.g., Isaac et al., 1984;
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1994; Fehr and Gächter, 2000; Fehr and Fischbacher, 2002; Fischbacher and Gächter, 2006; Burton-

Chellew and West, 2013; Burton-Chellew et al., 2016; Bao et al., 2022; Wang et al., 2024) and the

study of the restart effect in the game (e.g., Croson, 1996; Burton-Chellew, 2022). Specifically,

we link the noise behind the non-zero contribution in the public goods game hypothesized by

Burton-Chellew and West (2013) with the cognitive noise defined by Enke and Graeber (2023) and

test it through economic experiment. We find that cognitive noise introduces bias in contribution

decisions. While cognitive noise amplifies contributions at the aggregate level, there is heterogeneity

within the population regarding the direction in which it influences contributions.

Relatedly, our study also provides a mechanism for explaining why an increase in time pressure

(e.g., Rand et al., 2012; 2014; Rand and Kraft-Todd, 2014; Cone and Rand, 2014) or cognitive load

(e.g., Schulz et al., 2014; Cornelissen et al., 2011; Roch et al., 2000) could increase cooperation.

Adapting the cognitive noise model from Enke and Graeber (2023), our experimental results show

that manipulating complexity together with time pressure (even when it is not binding) would

increases subjects’ cognitive load. This, in turn, causes subjects to assign less weight to their true

social preferences and more weight to a cognitive default (i.e., a middle bias) when making con-

tribution decisions. Since most subjects would contribute less-than-half-of-their-endowment when

they are cognitively certain, cognitive uncertainty makes the subjects appear more cooperative.

Another contribution of our study is the additional tracking of the dynamics of cognitive un-

certainty in the public goods game. We find that the dynamics of cognitive uncertainty depend

on whether subjects receive cooperative advice before making their decisions. Specifically, in the

setting of the classic public goods game, there is no clear trend in cognitive uncertainty as the

game repeats. However, when subjects were provided with cooperative advice before making their

decisions, regardless of whether the advice came from an anonymous adviser or GPT, they showed

a decreasing cognitive uncertainty in their decisions as the game repeated. Generally speaking, our

experimental results demonstrate that a cooperative advice can assist individual in either gaining a

better understanding of their true social preference or translating their true social preferences into

contribution actions that maximize their utility as the game repeats.

Finally, we are related to the recent literature exploring rationality (Chen et al., 2023), social

preferences (Guo, 2023), and other capabilities (e.g., Brown et al., 2020; Chen et al., 2021; Lin

et al., 2020; Drori et al., 2022) of large language models (LLM) and GPT. We find that GPT-3.5

usually recommends a fairly cooperative level of contribution when instructed to act as a human

decision maker in a public goods game.

The paper is organized as follows: Section 2 outlines the experimental design. Section 3 presents

the results. Finally, Section 4 concludes the paper.
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2 Experimental Design

2.1 Testable Hypotheses

This paper aims to explore the relationship between cognitive noise and contribution decisions in

the public goods game.

Specifically, we examine whether the observed decline in contributions, which is often reported

in the literature in the without-punishment public goods game, can be attributed to a decrease in

cognitive uncertainty during the decision-making process.

First, we investigate whether participants become more certain about their decisions as the

game repeats, where cognitive uncertainty arising from either being unaware of their true social

preference or from uncertainty regarding the optimal action to maximize utility based on their

social preference. We formulate our first hypothesis as follows:

Hypothesis 1: Cognitive uncertainty decreases over time. As the game repeats, participants

become more certain about their contribution decisions.

According to the cognitive noise hypothesis proposed by Enke and Graeber (2023), when indi-

viduals experience higher cognitive uncertainty in their decision-making, they tend to assign more

weight to the cognitive default (e.g., the middle of the response scale). Consequently, this leads to

observed decisions that deviate more significantly from their true preferences. Combining this with

Hypothesis 1, we propose our second hypothesis:

Hypothesis 2: Higher measured cognitive uncertainty is associated with decisions closer to a

50% contribution of the endowment. This implies that as the game repeats, the absolute difference

between the actual contribution and the 50% contribution of the endowment becomes larger.

Considering the decreasing trend typically observed in the literature and our hypothesis of an

increasing cognitive uncertainty as game repeats, we also hypothesize a negative correlation between

cognitive uncertainty and contribution decisions.

Hypothesis 3: Cognitive noise is positively correlated with contribution. In other words, cognitive

uncertainty leads individuals to behave as if they are more cooperative.

Lastly, we hypothesize that receiving a cooperative recommendation from an advisor or the

GPT would alter participants’ cognitive uncertainty about their decision, thereby influencing their

ultimate decision. We further hypothesize that the degree to which participants trust and adopt

advice from a general advisor and the GPT will differ.

Hypothesis 4: Participants’ cognitive uncertainty changes when they receive a cooperative recom-

mendation, and their decision also leans towards the cooperative recommendation. Furthermore,

participants may trust and adopt recommendations to different extents depending on whether or not
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they are informed that it comes from GPT.

2.2 Participation Pool, Logistics, Group, and Treatment

The experiments were conducted online with undergraduate students recruited from Nanyang Tech-

nological University (NTU), and programmed using oTree (Chen et al., 2016). A total of 140 NTU

students from all majors participated in our experiments on June 22, 2023. At the beginning of

each session, each subject received their private experimental link through a direct private chat

with the experimenter on Microsoft Teams. All participants do not know the size of the session or

the identity of other participants.

The experimental procedure is as follows, with the detailed instructions can be found in Ap-

pendix C. Once participants had finished reading the instructions, they were instructed to complete

four control questions on the public goods game from Fehr and Gächter (2000), as well as one con-

trol question on cognitive uncertainty from Enke and Graeber (2023). Once they answered all

questions correctly, subjects were then randomly paired into groups of four to play the public

goods game and indicate their level of certainty regarding their contribution decision after each

round. Specifically, after making the contribution decision for each round, the subsequent screen

reminded them of their previous decision and elicited cognitive uncertainty. Participants answered

the following question by selecting a radio button between 0% and 100% in steps of 10%.

Your decision on the previous screen indicates that you would like to contribute x points

to the group project. How certain are you that you would actually want to contribute

somewhere between x− 1 points and x+ 1 points to the project?

We isolate reciprocity by inform subjects that there is reshuffling the composition of the group

in each round. To also eliminate the effect of inequality aversion, subjects were only able to see

their own payoff, and there was a time limit of 10 seconds in each period for viewing the payoff to

prevent them from calculating others’ payoff.

All subjects are placed into groups of four and play for 20 rounds, with a restart prior to

Rounds 11. They were informed that the instructions for the next 10 rounds were exactly the same

as the previous 10 rounds, which were shown to them as a reminder. The only difference was that

subjects in Group GPT were prompted with a recommendation by GPT-3.5, informing them that

GPT usually contributes 13 out of 20 of the endowment5, based on the same instruction provided

to them. Subjects in the Group Adviser were given the same recommendation, with the distinction

that they were told the recommendation came from an adviser.

5The decision from GPT was generated using the GPT API, with the instructions largely adapted from (Chen et al.,
2023) where they investigated the rationality of GPT. On average, GPT contributed 13 out of 20 points in the 150
decisions it made. The detailed instructions to GPT and the summary statistics of GPT’s decisions can be found in
Appendix D.
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Figure 1. Upper panel: Histogram of percentage of contribution (left panel, N = 2978) and cognitive
uncertainty (right panel, N = 2978). Bottom Panel: Correlation between percentage of contribution in the
first game vs. in the restart game (left panel, N=140, ρ=0.725) and correlation between cognitive
uncertainty in the first game vs. in the restart game (right panel, N=140, ρ=0.831)

The implementation of other groups is as discussed in Treatment. One can find the details in

Table B.2, and the screenshot of the instruction in Appendix C. We refer to the first 10 rounds

as the ”first game” and the last 10 rounds as the ”restart”. It is important to note that since the

treatments of recommendation are imposed only after the end of the first game, all groups in the

first game are playing the Treatment Baseline.

At the end of the experiment, the experimenter privately paid the participants using the QR

code provided by the participants.

2.3 Summary Statistics

The histogram of contributions and cognitive uncertainty can be found in Figure 1, and the de-

tailed summary statistics can be found in Table B.1. On average, subjects contributed 19.43%

of their endowment, with 43% of the decisions resulting in zero contribution to the public group
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account. Additionally, subjects display a moderate level of cognitive certainty in their decisions of

contribution compared to in other domain in the literature, with an average cognitive uncertainty

of around 20% and 37.9% of decisions associated with zero cognitive uncertainty. Similar to Enke et

al. (2023), we observe reasonably high within-domain stability, where subjects exhibit consistency

in displaying high or low cognitive uncertainty. Specifically, both contribution decisions (ρ=0.7247)

and cognitive uncertainty (ρ=0.8312) are highly correlated before and after the restart of the game.

Consequently, we control for subject fixed effects in all of our analyses. Participants earn an average

of S$11.17 for a mean completion time of 1 hour.

3 Cognitive Uncertainty and Apparent Social preference

3.1 Decreasing Cognitive Uncertainty After Receiving Cooperative Advice

The bottom panel of Figure 2 depicts the evolution of cognitive uncertainty as the game repeats.

The main finding is that there is no discernible trend in the evolution of cognitive uncertainty

in the Treatment Baseline. In contrast, when subjects are prompted with a recommendation

to contribute 65% of their endowment (which is relatively cooperative compared to the average

contribution decision of 23% of their endowment in the first game), they become more certain

about their contribution decisions as the game repeats. We also plot the evolution of contribution

in the upper panel of Figure 2, which shows a similar pattern as the findings in the existing literature

(e.g., see Croson, 1996 Figure 1)6.

Table 1 presents the corresponding aggregate regression estimates that control for subject fixed

effects and lagged average contribution from his group members, and separate the subjects by

treatment7. The results confirm the visual impression from Figure 2. In Treatment Baseline and

regardless of it is the first or restart game, we fail to observe a significant trend in the evolution

of cognitive uncertainty as the game repeats, as showed in Column (2) and (4)-(6). In contrast,

a prompt of cooperative advice increases subjects’ cognitive certainty by 11% in total over the

10 rounds of games. The lagged average contribution from group members is not found have

significant impact on subjects’ cognitive uncertainty. Meanwhile, we conduct Wald Test of the

slope of cognitive uncertainty on round, comparing between that in the Restart game against in

the First game. There is a significant change in the slope of cognitive uncertainty in Group Adviser

(p=0.007) and Group GPT (p=0.022), but the slope does not show significant change in the Group

Baseline (p=0.739). We also fail to find any significant difference in the slope in Treatment GPT

6As shown in the bottom panel of Figure 2, participants contribute between 30-40% of their endowment in the first
round, but the contribution decays to 10%-20% when the game is repeated. When the game is simply restarted, a
restart effect is observed, where there is a slight increment in contribution at the beginning of the restart, followed
by a decay in contribution as the game repeats, similar to the pattern observed in the first game.
7Table B.3 presents the regression table, similar to Table 1, but with subjects grouped according to their assigned
groups instead of the treatment. It displays comparable results to those in Table 1.
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Table 1:  Variation of Cognitive Uncertainty with respect to Rounds 

 
 Dependent Variable:  

Cognitive Uncertainty 

Treatment  Pooled   Baseline  Adviser GPT 

Game All First Restart All First Restart Restart Restart 

 (1) (2) (3) (4) (5) (6) (7) (8) 

         

Round -0.15 -0.20 -0.86*** -0.16 -0.20 -0.27 -1.10*** -1.21*** 
(0.10) (0.25) (0.21) (0.16) (0.25) (0.40) (0.36) (0.36) 

         
Average Lagged 
group members’ % 
contribution 

0.00 -0.04 0.03 -0.02 -0.04 0.03 0.06 -0.02 

(0.03) (0.04) (0.04) (0.04) (0.04) (0.07) (0.08) (0.07) 
         
Observations 2,656 1,259 1,397 1,698 1,259 439 478 480 
R-squared 0.60 0.63 0.67 0.59 0.63 0.59 0.66 0.73 
         

Notes. Subject level fixed effect OLS estimates, with robust standard errors (in parentheses) are clustered at 
the subject level. Column (1)-(3) pooled all data in all groups and treatment but separate them by the game. 
Column (4)-(6) include all the data in Treatment Baseline. Specifically, Column (5) include data from all 
treatment in the First game, while Column (6) only include data from Group Baseline in the Restart Game. 
Column (7)-(8) restrict attention to the decisions in the Restart Game of Group Adviser and Group GPT, 
respectively. *** p<0.01, ** p<0.05, * p<0.1.  

  

and Treatment Adviser (p=0.922). The results from Wald test are consistent with our previous

observation, where a cooperative advice assists individuals to become more cognitively certain

about their decisions as the game repeats.

It is important to note that our analysis focuses solely on the evolution of cognitive uncertainty

as the game repeats in response to cooperative advice. The analysis on whether the cooperative

advice increases or decreases cognitive uncertainty on level will be addressed in Section 3.3.1.

Result 1: Subjects exhibit a decreasing trend in cognitive uncertainty as the game repeats but only

after being prompted with cooperative advice from either an anonymous adviser or GPT-3.5.

The implication our Result 1 is that the dynamics of cognitive uncertainty depend on whether

subjects receive cooperative advice before making their decisions. Specifically, in the setting of the

classic public goods game and as the game repeats, there is no clear trend in cognitive uncertainty.

However, when subjects were provided with cooperative advice before making their decisions, re-

gardless of whether the advice came from an anonymous adviser or GPT, they showed a decreasing

cognitive uncertainty in their decisions as the game repeated. Generally speaking, our experimental

results demonstrate that a cooperative advice can assist individual in either gaining a better un-

derstanding of their true preference or translating their true preferences into contribution actions

that maximize their utility as the game repeats. We also find that advice from the GPT reduces

cognitive uncertainty for all participants, though the impact of the advice does not seem to depend

12



on whether or not the participants are informed the advice was made by GPT.

3.2 Linking Cognitive Uncertainty to Contribution Decision
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Figure 3. Full Sample. Average contribution percentage to the public goods. Cognitive uncertainty is
distinguished by comparing with the average of the cognitive uncertainty pooling all data in the
experiment within a given round. High cognitive uncertainty decisions are decisions with cognitive
uncertainty that are larger or equal to the average cognitive uncertainty within a given round, while low
cognitive uncertainty are those with a cognitive uncertainty that are smaller than the average cognitive
uncertainty within a given round.

3.2.1 Cognitively Uncertain Decisions are Closer the Cognitive Default

In this section, we examine how cognitive uncertainty affects contribution decisions. We begin by

replicating the graphical analysis conducted in Enke and Graeber (2023). Figure 3 displays the raw

data on how contribution decisions evolve across rounds when pooling all the data, distinguishing

between decisions associated with above-average cognitive uncertainty (High Cognitive Uncertainty)

and below-average cognitive uncertainty (Low Cognitive Uncertainty) within a given round. An

analogous figure, where the sample is separated by treatment, can be found in Figure A.1-Figure

A.3.

In contrast to the inelastic pattern observed in cognitively uncertain decisions in their study, we

do not find any difference in elasticity between decisions with high and low cognitive uncertainty.

This visual observation is supported by Table B.4, where we fail to find an opposite and statistically
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opposite and statistically significant coefficient between round and the interaction term 

(between cognitive uncertainty and round). 

Table 2: Absolute Deviation from Cognitive Default with regards to Cognitive uncertainty 
 

 Dependent Variable:  
Absolute Contribution Deviation from 50% of the Endowment 

Treatment  Pooled   Baseline  Adviser GPT 

Game All First Restart All First Restart Restart Restart 

 (1) (2) (3) (4) (5) (6) (7) (8) 

         

Cognitive 
Uncertainty 

-0.16*** -0.14*** -0.18*** -0.15*** -0.14*** -0.20*** -0.13* -0.22*** 
(0.03) (0.05) (0.04) (0.04) (0.05) (0.06) (0.07) (0.06) 

         
Average Lagged 
group members’ % 
contribution 

-0.20*** -0.19*** -0.18*** -0.20*** -0.19*** -0.17*** -0.19*** -0.17*** 

(0.02) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.05) 
         
Observations 2,656 1,259 1,397 1,698 1,259 439 478 480 
R-squared 0.12 0.10 0.12 0.10 0.10 0.14 0.09 0.16 
Number of Subject 140 140 140 140 140 44 48 48 

Notes. Fixed effects model with cluster-robust standard errors for panels nested within subject level. Column (1)-(3) 
pooled all data in all groups and treatment but separate them by the game. Column (4)-(6) include all the data in 
Treatment Baseline. Specifically, Column (5) include data from all treatment in the First game, while Column (6) only 
include data from Group Baseline in the Restart Game. Column (7)-(8) restrict attention to the decisions in the Restart 
Game of Group Adviser and Group GPT, respectively. *** p<0.01, ** p<0.05, * p<0.1 

 

However, this does not mean that our results do not support their hypothesis suggesting that 

cognitively uncertain decisions are closer to the heuristic default of 50% contribution. The lack 

of significant differences in contribution decision patterns can be attributed primarily to the 

prevalence of the low contribution decisions in our experiment, as indicated by the histogram 

in Figure 1. This resulted in a scarcity of data points demonstrating a high contribution 

percentage across various levels of cognitive uncertainty. 

As shown in Figure 3 and Figure A.1, contribution decisions associated with higher cognitive 

uncertainty tend to be closer to the 50% heuristic compared to those with lower cognitive 

uncertainty. The results from fixed-effects panel data regression estimates, controlling for 

payment history in Table 2, confirm the impression conveyed in Figure 3. Specifically, Table 

2 demonstrates that cognitively uncertain decisions are significantly closer to the heuristic 

default of 50% contribution in Column (2). In Table B.5, we replace the dependent variable 

with the absolute difference from 65% contribution, which corresponds to the recommendation 

provided to participants in Treatment GPT and Treatment Adviser. Once again, we find that all 

columns show a negative and statistically significant result, indicating that cognitively 

uncertain decisions are closer to the cognitive default. We come to our second conclusion. 

significant coefficient between round and the interaction term (between cognitive uncertainty and

round).

However, this does not mean that our results do not support their hypothesis suggesting that

cognitively uncertain decisions are closer to the heuristic default of 50% contribution. The lack of

significant differences in contribution decision patterns can be attributed primarily to the prevalence

of the low contribution decisions in our experiment, as indicated by the histogram in Figure 1. This

resulted in a scarcity of data points demonstrating a high contribution percentage across various

levels of cognitive uncertainty.

As shown in Figure 3 and Figure A.1-A.3, contribution decisions associated with higher cog-

nitive uncertainty tend to be closer to the 50% heuristic compared to those with lower cognitive

uncertainty. The results from fixed-effects panel data regression estimates, controlling for payment

history in Table 2, confirm the impression conveyed in Figure 3. Specifically, Table 2 demon-

strates that cognitively uncertain decisions are significantly closer to the heuristic default of 50%

contribution in Column (2). In Table B.5, we replace the dependent variable with the absolute dif-

ference from 65% contribution, which corresponds to the recommendation provided to participants

in Treatment GPT and Treatment Adviser. Once again, we find that all columns show a negative

and statistically significant result, indicating that cognitively uncertain decisions are closer to the

cognitive default. We come to our second conclusion.

Result 2: Our experimental data support the cognitive uncertainty hypothesis proposed by Enke

and Graeber (2023). Using a correlational study, we find that subjects assign less weight to the
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cognitive default (50% contribution, implying a middle bias) when they are more cognitively certain

about their decisions. In turn, the cognitively certain decisions deviate further from the cognitive

default and represent more of their true social preference.

3.2.2 Cognitive Noise Makes People Contribute More on an Aggregate Level

The cognitive uncertainty model suggests that when people experience cognitive uncertainty, they

assign more weight to a default and less weight to their true preference. In this section, we examine

how a cognitive noise biases the apparent social preference.

As shown in Figure 2, the overall contribution levels of cognitively uncertain decisions are higher

compared to cognitively certain decisions. The results from fixed-effects panel data regression

estimates, controlling for lagged average contribution from group members in Table 3, confirm this

observation. When decision-makers are completely uncertain about their decisions, they contribute

20% to 30% more than when they are completely cognitively certain. In Appendix E, we conduct a

separate causal study. In the treatment Complexity, we increase the complexity by displaying the

multiplier in a complicated mathematical equation. We find that both cognitive uncertainty and

contribution are higher in the treatment Complexity. In conclusion, both correlational and causal

results confirm that at the aggregate level, cognitive uncertainty leads individuals to contribute

more to the public account, even though they are less cooperative than their decisions imply8.

To test how much cognitive uncertainty alone could explain the contribution decision in public

goods game, we first tabulate the summary statistics cognitive uncertainty in different level of

contribution in Table B.6. There is an increasing trend of cognitive uncertainty when contribution

is smaller than 30, but not clear afterwards. We further repeat the analysis in Table 3 Panel A but

only include cognitive uncertainty as the sole explanatory variable. The result is showed in Table

B.7. When only including cognitive uncertainty into the regression on contribution, the R2 stays

at a low level (i.e., between 0.03 and 0.06). Meanwhile, on the aggregate level, a 100% increase in

the cognitive uncertainty could only increase contribution by 18% - 25% of the contribution. We

also find that when other group members contribute 100% more in the last period on average, it

leads subject to contribute at least 18% more in this period.

Furthermore, we conduct a subject-level fixed effect regression analysis of contribution, with

additionally control for the confusion (i.e., cognitive uncertainty) and lagged average contributions

from other group members, to find out whether the declining contribution by round is due to

confusion or frustrated attempts at kindness. The result is showed in Table B.8. The larger

8Meanwhile, we conduct Wald Test of the slope of contribution as game repeats, comparing between that in the
Restart game against in the First game. There is a significant change in the slope of contribution in Group Adviser
(p=0.000) and Group GPT (p=0.000), but the slope does not show significant change at 5% in the Group Baseline
(p=0.083). We also fail to find any significant difference in the slope in Treatment GPT and Treatment Adviser
(p=0.622). The results from Wald test are consistent with our previous observation on the change of slope in
cognitive uncertainty, and further signal that contribution is affected by the cognitive uncertainty.
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contribution, the /!  stays at a low level (i.e., between 0.03 and 0.06). Meanwhile, on the 

aggregate level, a 100% increase in the cognitive uncertainty could only increase contribution 

by 18% - 25% of the contribution. We also find that when other group members contribute 

100% more in the last period on average, it leads subject to contribute at least 18% more in this 

period. 

 
Table 3: Percentage of Contribution with respect to Cognitive Uncertainty 

 
 Dependent Variable:  

Percentage of Contribution 

Treatment   Pooled     Baseline   Adviser GPT 

Game All First Restart All First Restart Restart Restart 

 (1) (2) (3) (4) (5) (6) (7) (8) 

         

Panel A: Aggregate Analysis 

 
Cognitive 
Uncertainty 

0.23*** 0.25*** 0.21*** 0.25*** 0.25*** 0.24*** 0.18** 0.23*** 
(0.05) (0.07) (0.04) (0.06) (0.07) (0.08) (0.08) (0.07) 

         
Average 
Lagged group 
members’ % 
contribution 

0.30*** 0.31*** 0.20*** 0.31*** 0.31*** 0.18*** 0.21*** 0.23*** 

(0.03) (0.04) (0.03) (0.04) (0.04) (0.04) (0.05) (0.07) 
         

Observations 2,656 1,259 1,397 1,698 1,259 439 478 480 
R-squared 0.12 0.12 0.09 0.12 0.12 0.10 0.10 0.08 
Number of 
Subject 140 140 140 140 140 44 48 48 
         

Panel B: Individual Analysis 

 
Cognitive uncertainty makes them contribute more 
No. subjects 40 25 27 15 9 9 8 10 

         

Cognitive uncertainty makes them contribute less 

No. subjects  5 11 5 2 3 0 2 3 

         

Total Subjects 140 140 140 44 44 44 48 48 

Notes. Fixed effects model with cluster-robust standard errors for panels nested within subject level. Column 
(1)-(3) pooled all data in all groups and treatment but separate them by the game. Column (4)-(6) include all 
the data in Treatment Baseline. Specifically, Column (5) include data from all treatment in the First game, 
while Column (6) only include data from Group Baseline in the Restart Game. Column (7)-(8) restrict attention 
to the decisions in the Restart Game of Group Adviser and Group GPT, respectively. *** p<0.01, ** p<0.05, 
* p<0.1. Panel B: OLS estimates on each subject, controlling the lagged average contribution from group 
members showed in Panel A. Subjects are categorized as cognitive uncertainty make them contribute more 
(contribute less) when coefficient of cognitive uncertainty on percentage of contribution is greater than (smaller 
than) zero, and the p-value of the coefficient is less than 0.05. 
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absolute coefficient on round compared to cognitive uncertainty implies that frustrated attempts at

kindness explains more on the declining contribution, compared to confusion, which is consistent

with the finding from Andreoni (1995). However, confusion also plays a non-trivial part in it, as

they are still statistically significant when control for round.

Overall, our results suggest that cognitive uncertainty cannot explain contribution behavior

alone. Instead, cognitive uncertainty only complements but not replace the taste-based social

preference to explain the contribution decision. Specifically, cognitive noise distorts the contribution

decision that primarily reflects subjects’ true social preference.

Next, we conduct the individual level analysis to look at if there is any heterogeneity within the

subject. i.e., Is there any subject who are in fact more cooperative, while the cognitive uncertainty

makes them appear to be less cooperative? The results are presented in Table 3 Panel B. For

each subject, we estimate a regression model to analyze how their contribution decisions change

with increasing cognitive uncertainty, while controlling for lagged average contribution from group

members. Subjects are then categorized as cognitive uncertainty making them contribute more

(contribute less) when the coefficient of cognitive uncertainty is greater than (smaller than) zero,

and the p-value of the coefficient is less than 0.05.

When pooling all the data from our experiment in Column (1), we find that the majority of

subjects (28.6%) significantly contribute more due to cognitive uncertainty, while only a minority

of subjects (3.6%) significantly contribute less due to cognitive uncertainty. This pattern remains

consistent when separating the data by rounds and treatment. The summary statistics of these

two types of subjects are presented in Table B.9. Although the number of subjects where cognitive

uncertainty significantly makes them contribute less is small, the effect size is notable. Pooling all

the data and among the 5 subjects where cognitive uncertainty significantly makes them contribute

less, a 50% increase in cognitive uncertainty would result in a 41.2% reduction in their contribu-

tion. The magnitude is even larger than the that of the 40 subjects where cognitive uncertainty

significantly makes them contribute more, where a 50% increase in cognitive uncertainty would

only result in a 36.3% rise in their contribution9. We come to our third conclusion:

Result 3: Cognitive noise complements, rather than replaces, taste-based social preference to ex-

plain the contribution decision. We find that cognitive noise distorts the contribution decision that

primarily reflects subjects’ true social preference. Both correlational and causal data supports the

notion that cognitive uncertainty is positively correlated with contribution in the public goods game

at the aggregate level, or cognitive uncertainty leads people to behave as if they are more cooperative.

9We also conduct statistical test on the equality of the coefficient of cognitive uncertainty on contribution, where
the coefficient is standardized into an absolute value. We find the magnitude of the coefficient of those cognitive
uncertainty make them contribute less (from 5 subjects) is larger than that of those cognitive uncertainty make them
contribute more (from 40 subjects): Two-sample t-test with unequal variance: t=7.6185, p=0.001; ranksum: z=3.612,
Exact p=0.0000. Note that the analysis suffers from small sample problem. Meanwhile, the cognitive uncertainty of
those whose cognitive uncertainty make them contribute less (from 5 subjects) is statistically significantly larger than
those whose cognitive uncertainty make them contribute more (from 40 subjects): Two-sample t-test with unequal
variance: t=6.4694, p=0.000, N=899; rank sum: z=6.407, Exact p=0.0000, N=899.
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However, there is heterogeneity, where cognitive noise is negatively correlated with the contribution

level some participants at an economically significant extent.

The implication of Result 3 is that future studies on public goods game should measure cognitive

uncertainty and take cognitive uncertainty into consideration. At the aggregate level, cognitive noise

leads people to contribute more, whereas in reality, individuals are less cooperative than suggested

by their contribution decisions in the public goods game due to cognitive noise. Moreover, our data

also reveals heterogeneity in how cognitive uncertainty affects apparent social preference. While the

cognitive noise is positively correlated with the contribution level of the majority of the subjects,

there is still a minority of subjects whose level of contribution is actually negatively correlated with

cognitive noise at an economically significant extent. Therefore, when researchers are interested in

determining subjects’ true social preference, they should consider their contribution decisions only

when the corresponding cognitive uncertainty is below an acceptable threshold.

3.3 Impact of Cooperative Advice From Adviser and GPT

In the previous section, we examined how a cooperative advice would impact the change in the

slope of cognitive uncertainty with respect to the rounds of the game. We observed that subjects

found the contribution decision to be less cognitively uncertain only after being prompted with

cooperative advice from either an anonymous adviser or GPT-3.5.

In this section, we investigate how a cooperative advice would affect the level change in par-

ticipants’ cognitive uncertainty and contribution decisions. In other words, we ask whether parti-

cipants trust an anonymous adviser and GPT-3.5 to a different level?

Since subjects’ reactions to the advice given by GPT may be influenced by their prior experience

with GPT, we further divide the sample into two groups: those who are inexperienced with GPT

(i.e., those who have never heard of GPT, heard of it but never used it, or only used it once prior

to the experiment), and those who are experienced with GPT (i.e., those who have used GPT more

than once prior to the experiment)10.

3.3.1 Local Effect (RD Analysis)

We begin by focusing on the short-run local effect. Figure 2 presents line graphs depicting the

changes in cognitive uncertainty and contribution decisions as the game is repeated. With the

exception of cognitive uncertainty in Group Baseline, we observe a jump in both contribution

decision and cognitive uncertainty in all other groups at the restart of the game. Figure A.2 and

Figure A.3 display regression discontinuity plots at the cutoff point of round = 10.5, separately for

10In the Treatment Baseline, there are 20 inexperienced GPT user and 24 experienced GPT user. In Adviser
treatment, there are 17 inexperienced GPT user and 31 experienced GPT user. In GPT treatment, there are 20
inexperienced GPT user and 28 experienced GPT user.
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Table 4: Covariate-adjusted Sharp RD Estimates using Local Polynomial Regression 
 

Dependent 
Variable  Percentage of Contribution   Cognitive Uncertainty  

Group Pooled Baseline Adviser GPT Pooled Baseline Adviser GPT 
 (1) (2) (3) (4) (5) (6) (7) (8) 

         

Panel A: Pooled  
 
Sharp RD 
Estimate  

14.49*** 8.78* 17.32*** 14.68** 5.12 0.24 10.25* 4.55 
(3.22) (5.27) (4.92) (5.78) (3.36) (5.54) (5.90) (5.98) 

         

Observations 2,656 789 861 864 2,656 789 861 864 
         

Panel B: Inexperienced GPT user 
 
Sharp RD 
Estimate 

12.41*** 6.71 17.49*** 13.96* 7.36 1.75 5.72 12.99 

(4.01) (6.54) (6.12) (8.10) (4.83) (6.68) (7.83) (10.18) 

         

Observations 1,083 360 306 360 1,083 360 306 360 

         

Panel C: Experienced GPT user 
 
Sharp RD 
Estimate 

15.97*** 10.72 17.19** 14.37* 3.81 -0.08 12.58 -1.63 

(4.58) (8.13) (6.83) (7.93) (4.68) (8.85) (8.19) (7.09) 

         

Observations 1,573 429 555 504 1,573 429 555 504 

         

Notes. Local polynomial sharp regression discontinuity estimates, RD cutoff point at round = 10.5 and 
additionally control for the lagged average contribution by the group members, with robust standard error 
clustered (in parentheses) clustered at subject level. *** p<0.01, ** p<0.05, * p<0.1 

 

3.3.2 Global Effect (DID Analysis) 

Next, we examine whether there is a sustained effect from cooperative advice on cognitive 

uncertainty and contribution. We estimate the Average Treatment Effect on the Treated (ATET) 

after testing if the trend of cognitive uncertainty and contribution is parallel before the restart 

of the game (where all groups were playing the Treatment Baseline). Additionally, we depict 

the evolution of contribution as the game is repeated, which is shown in the upper panel of 

Figure 1. The main takeaway from the figure is that there is no significant difference in the 

First Game between the three treatments, which is confirmed by the parallel trend tests in Table 

B.10 and B.1111. The estimation results on the treatment effect are presented in Table B.10 and 

 
11 We run differences-in-differences regression (DID) for panel data to compare if the differences between the 
two groups change significantly after the respective treatments are imposed. Each unit of observation is a decision 

made by a participant at a period, with the standard errors clustered at the subject level in the following form: 4 =
5! + 5"789:; + 5#<=>?- + 5$789:; × <=>?- + A. Treat = 1 when the round number of treatment group is 

each group. The graphs capture the local effect of the restart in Group Baseline and the combined

effect of the restart and cooperative advice in Group Adviser and Group GPT. The treatment effect

appears to be visually larger in Group Adviser and Group GPT compared to Group Baseline in

the contribution decision. Meanwhile, the jump is larger in the contribution compared to that in

the cognitive uncertainty.

Table 4 presents the corresponding sharp RD estimates. We find a statistically significant local

effect of the cooperative advice on contribution, where there are larger magnitudes in Column

(3) and (4), compared to Column (2) which only captures only the restart effect. The finding is

generally robust to subjects’ prior experience with GPT. In contrast, we do not find a statistically

significant restart effect or an effect from the cooperative advice on cognitive uncertainty at the 5
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3.3.2 Global Effect (DID Analysis)

Next, we examine whether there is a sustained effect from cooperative advice on cognitive uncer-

tainty and contribution. We estimate the Average Treatment Effect on the Treated (ATET) after

testing if the trend of cognitive uncertainty and contribution is parallel before the restart of the

game (where all groups were playing the Treatment Baseline). Additionally, we depict the evolu-

tion of contribution as the game is repeated, which is shown in the upper panel of Figure 1. The

main takeaway from the figure is that there is no significant difference in the First Game between

the three treatments, which is confirmed by the parallel trend tests in Table B.10 - B.13.11 The

estimation results on the treatment effect are presented in these tables, with significant treatment

effects of at least a 10% significance level and a parallel trend highlighted with a border.

Overall, we observe a similar pattern to the RD analysis, where there is only a significant and

positive effect on contribution from cooperative advice. However, this effect does not appear to

persist beyond 4 rounds in the restart game, as shown in Column (1) and (2) of Table B.10 and

Table B.11. This positive effect on the contribution decision is sustained and pronounced among

those who are experienced with GPT. By contrast, as showed in Table B.12 and Table B.13, the

effect on cognitive uncertainty is not sustained and lasts at most for two period after the treatment,

which lasts for a much shorter period compared to the effect on contribution. We therefore come

to our fourth conclusion:

Result 4: Our experimental results support the hypothesis that subjects’ responses may be biased

towards GPT’s decisions in the absence of supervision during online experiments. However, the

impact from GPT is relatively short run and un-sustained for 10 rounds of the game. But in

the short run, whether they specifically bias their decisions towards the explanation provided by

GPT cannot be simply captured by changes in cognitive uncertainty, at least in the context where

GPT advises a cooperative contribution decision. Meanwhile, we did not observe any significant

and sustained difference between Group Adviser and Group GPT in both cognitive uncertainty and

contribution decision, indicating the absence of a GPT premium.

Our Result 4 implies that future studies aiming to explore subjects’ preferences through online

11We run differences-in-differences regression (DID) for panel data to compare if the differences between the two
groups change significantly after the respective treatments are imposed. Each unit of observation is a decision
made by a participant at a period, with the standard errors clustered at the subject level in the following form:
y=β0+β1×Round+β2×Treat+β3×Round×Treat+ϵ. Treat = 1 when the round number of treatment group is greater
than 10. y represent contribution in Table B.8 and cognitive uncertainty in Table B.9. To look at how long the effect
lasts, we keep the sample in the treatment from only Round = 11; Round = 11 and 12; . . . Round = 11 to 20 and run
the DID regression separately in each table. For each regression, we also conduct the postestimation parallel trend
and report the p-value. Specifically, we call a p-value on parallel test that is smaller 0.05 “linear trend not parallel at
95% level”, meaning that the two groups are already differ from each other before the treatment is imposed. We also
report the coefficient and robust standard error of ATET. As a result, we call a valid treatment effect when p-value
of ATET is smaller than 0.1, with the p-value of parallel trend greater than 0.05, which are labeled with a border.
A sustained effect would therefore be concluded when the abovementioned effect (represented by a bordered cell) is
sustained when we include more periods after the treatment into the sample. By contrast, a short run effect would
be concluded when the abovementioned effect (represented by a bordered cell) lasts only several periods.
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experiments will need to conduct additional lab experiments for robustness. Further, the lack

of GPT premium provides a useful perspective on how AI-human interaction influences human

decision on the social context.

4 Conclusion

This paper examines the link between cognitive noise and contribution decisions in the public goods

game.

Our results demonstrate that a cooperative advice can assist individual in either gaining a

better understanding of their true preference or translating their true preferences into contribution

actions that maximize their utility as the game repeats. We also find that GPT advice reduces

cognitive uncertainty for all participants, though the impact of the advice does not seem to depend

on whether or not the participants are informed the advice was made by GPT.

Further, we argue that cognitive noise complements, rather than replaces, taste-based social

preference to explain the contribution decision. Specifically, cognitive noise distorts the contribution

decision that primarily reflects subjects’ true social preference. Across all treatments, we observe

that subjects assign more weight to the cognitive default (50% contribution of their endowment,

implying a middle bias) when they are less cognitively certain about their decisions. Therefore, both

correlational and causal data from our experiment support the cognitive uncertainty hypothesis

proposed by Enke and Graeber (2023), and the result is robust when removing strategic uncertainty.

At the aggregate level, cognitive uncertainty leads individuals to contribute more to the public

account, which means that they may be less cooperative than what their decisions imply. We also

find heterogeneity among the participants in terms of the direction in which cognitive noise biases

their apparent social preference. While cognitive noise is positively correlated with the contribution

level of the majority of subjects, there is still a minority of subjects whose level of contribution

is negatively correlated with cognitive noise to the extent that is economically significant. In

other words, there are a minority of subjects in our experiment are in fact more cooperative,

while cognitive noise makes them appear to be less cooperative. These results suggest that when

researchers are interested in determining subjects’ true social preference, they should consider their

contribution decisions only when the corresponding cognitive uncertainty is below an acceptable

threshold.

Meanwhile, our experimental results support the hypothesis that subjects’ responses may be

biased towards GPT’s decisions in the absence of supervision during online experiments. Fur-

thermore, whether they specifically bias their decisions towards the explanation provided by GPT

cannot be simply captured by changes in cognitive uncertainty, at least in the context where GPT

advises a cooperative contribution decision. These findings suggest that future studies aiming to
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explore subjects’ preferences through online experiments will need to conduct additional supervised

laboratory experiments for robustness. Meanwhile, we did not observe any significant and sustained

difference between Group Adviser and Group GPT in both cognitive uncertainty and contribution

decision, indicating the absence of a GPT premium. Our result provides a useful perspective on

how AI-human interaction influences human decision on the social context.
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Figure A.1. Treatment Baseline. Average contribution percentage to the public good separating
the treatment. Cognitive uncertainty is distinguished by comparing with the average of the
cognitive uncertainty in the treatment of the experiment within a given round.
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Figure A.2. Treatment Adviser. Average contribution percentage to the public good separating
the treatment. Cognitive uncertainty is distinguished by comparing with the average of the
cognitive uncertainty in the treatment of the experiment within a given round.
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Figure A.3. Treatment GPT. Average contribution percentage to the public good separating the
treatment. Cognitive uncertainty is distinguished by comparing with the average of the cognitive
uncertainty in the treatment of the experiment within a given round.
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Figure A.4. Regression discontinuity plot on percentage of contribution with evenly spaced mimicking
variance number of bins using polynomial regression. Cut-off point at round = 10.5 and additionally
control for lagged average contribution from group members.
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Figure A.5. Regression discontinuity plot on cognitive uncertainty with evenly spaced mimicking variance
number of bins using polynomial regression. Cut-off point at round = 10.5 and additionally control for last
period payoff.
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Appendix B. Additional Tables 

Table B.1: Summary Statistics 
 

 Observation Mean Standard 
Deviation Minimum Maximum 

      
Panel A: Full Sample 
      
Subject ID 2,800 70.50 40.42 1 140 
% Contribution 2,798 19.43 25.43 0 100 
Cognitive Uncertainty 2,798 21.66 24.64 0 100 
Completion Time (in Min) 2,798 58.66 17.52 41.85 84.15 
Payoff Per Round (in Points) 2,798 22.34 4.562 8 40 

      

Panel B: Group Baseline 
 
Subject ID 880 22.50 12.71 1 44 
% Contribution 879 19.37 26.71 0 100 
Cognitive Uncertainty 879 19.10 23.17 0 100 
Completion Time (in Min) 879 47.25 0.669 45.22 48.33 
Payoff Per Round (in Points) 879 22.31 4.751 8 39 

      

Panel C: Group Adviser 
 
Subject ID 960 68.50 13.86 45 92 
% Contribution 959 22.08 24.75 0 100 
Cognitive Uncertainty 959 23.94 25.00 0 100 
Completion Time (in Min) 959 82.85 1.008 79.08 84.15 
Payoff Per Round (in Points) 959 22.69 4.504 10 40 

      

Panel D: Group GPT 
 
Subject ID 960 116.5 13.86 93 140 
% Contribution 960 16.84 24.66 0 100 
Cognitive Uncertainty 960 21.72 25.37 0 100 
Completion Time (in Min) 960 44.93 0.843 41.85 46.18 
Payoff Per Round (in Points) 960 22.02 4.420 8 38 

      

Note: The two missing values in contribution and cognitive uncertainty decisions are due to participants being 
temporarily absent during the experiment. The experimenter had to proceed with the experiment as those 
participants who did not submit their decisions were unable to be contacted for a long time. Additionally, it is 
noticeable that the Group Adviser took much longer time than the other two treatments. This is because we 
conducted the Group Adviser as the first session. Since it was a group experiment, subjects could only proceed 
once all participants had submitted their decisions. However, during the experiment, many subjects did not 
realize that they need to refresh the page, resulting in prolonged waiting times for each period that were not 
caused by other participants' delays. In response, the experimenter reminded the subjects to refresh the page 
when the webpage displaying the message "waiting for other participants" for too long. 
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Table B.2: List of Treatment Condition 
 

Group, abbrev. Description 

Treatment 

Sample 
All Rounds First Game Restart 

 Round 1-10 Round 11-20 
   

      
Baseline (SPCU_B) Subjects are placed into groups of four and play for 20 rounds, with a restart prior to 

Rounds 11. 
Baseline Baseline Baseline 44 

      
Complexity Number, 
(SPCU_TB) 

There are only 10 rounds of the game, and there is a changing multiplier factor in each 
round. 

Complexity 
Number 

Complexity 
Number 

NA 48 

      
Complexity Equation, 
(SPCU_T) 

Same as Complexity Baseline, except the multiplier factors are displayed in a mathematical 
function, and subjects only have 25 seconds to make the decision.  

Complexity 
Equation 

Complexity 
Equation 

NA 48 

      
Complexity Equation Soft 
Timeout, (SPCU_ST) 

Same as Complexity Equation, except that subjects were given a non-binding time limit of 
25 seconds to submit their decisions. 

Complexity 
Equation Soft 

Timeout 

Complexity 
Equation Soft 

Timeout 

NA 44 

      
Robustness 
(SPCU_R) 

Same as Baseline, except that ¼ of the participants are randomly assign a subset of subjects 
into the “Full Information” Treatment, so that they will always know the contribution of all 
other group members before making their own decision. Meanwhile, they will always be 
paired with three other subjects who do are not in the “Full Information” Treatment, and the 
other subjects do not know that they are playing with a subject who can access to their 
contribution decision.  
 

Robustness Robustness NA 84 

GPT 
(SPCU_G) 

Same as Baseline, except that participants are prompted with a recommendation from GPT-
3.5 of contributing 65% of the endowment after the end of the restart game. 

Mixed Baseline GPT 48 

      
Adviser 
(SPCU_A) 

Same as GPT, except that participants are not told the recommendation is made by GPT-
3.5, and only know that the recommendation is from an anonymous adviser. 

Mixed Baseline Adviser 48 

      

Note: In situations where subjects exceed their decision time in complexity equation treatment or have not made a decision for an extended period in all other treatments, prompting the 
experimenter to proceed, their decision will be labelled as 'Timeout = Yes. In these cases, they will not earn any money for this period but will instead make a random contribution between 0 
and 20 (i.e., their endowment) for the purpose of calculating the group project's return. They will not know that they made a random contribution but will only see their earning is 0 in the payoff 
page. Other subjects will not be aware that one group member's contribution is generated in this manner, as all participants within the entire session will be unable to view their results until all 
subjects have finalized their contribution decisions. The contribution decisions and 0 payoff when time out happens will be excluded from our analysis, Meanwhile, they would also only have 
10 seconds to view the result, preventing them to deduct what has happened.  
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Table B.3. Variation of Cognitive Uncertainty with respect to Rounds
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Table B.3: Variation of Cognitive Uncertainty with respect to Rounds 
 

 Dependent Variable:  
Cognitive Uncertainty 

Rounds:  All Rounds (i.e., Round 1-20)   First Game (Round 1- 10)   Restart (Round 11-20)  

Group: Pooled Baseline Adviser GPT Pooled Baseline Adviser GPT Pooled Baseline Adviser GPT 
Treatment Mixed Baseline Mixed Mixed Baseline Baseline Baseline Baseline Mixed Baseline Adviser GPT 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

             
Panel A: Aggregate Analysis 

 
Round -0.15 -0.13 -0.15 -0.16 -0.20 -0.20 -0.35 -0.06 -0.86*** -0.27 -1.10*** -1.21*** 

(0.10) (0.19) (0.17) (0.17) (0.25) (0.42) (0.47) (0.44) (0.21) (0.40) (0.36) (0.36) 
             
Average Lagged group 
members’ % contribution 

0.00 0.02 0.00 -0.02 -0.04 -0.01 -0.06 -0.06 0.03 0.03 0.06 -0.02 

(0.03) (0.06) (0.06) (0.04) (0.04) (0.07) (0.07) (0.05) (0.04) (0.07) (0.08) (0.07) 
             
Observations 2,656 834 910 912 1,259 395 432 432 1,397 439 478 480 

R-squared 0.60 0.54 0.55 0.67 0.63 0.63 0.55 0.71 0.67 0.59 0.66 0.73 
             
Panel B: Individual Analysis 

 
Decreasing trend of cognitive uncertainty as game repeats 
No. subjects  19 5 7 7 16 4 6 6 16 1 8 7 
             
Increasing trend of cognitive uncertainty as game repeats 
No. subjects  16 7 5 4 9 2 3 4 8 4 2 2 
             

Total Subjects 140 44 48 48 140 44 48 48 140 44 48 48 

Notes. Panel A: Subject level fixed effect OLS estimates, with robust standard errors (in parentheses) are clustered at the subject level, controlling for lagged average contribution from group 
members. Column (1)-(4) include data from all rounds of the games. Column (5)-(8) restrict attention to decisions in the first 10 rounds of the game, where no treatment has been imposed in 
any of the group. By contrast, column (9)-(12) look at the decisions after the restart of the game, where treatment was imposed at the beginning of the new 10 rounds. *** p<0.01, ** p<0.05, * 
p<0.1; Panel B: OLS estimates on each subject, controlling for the lagged average group members contribution showed in Panel A. Subjects are categorized as showing decreasing (increasing) 
trend of cognitive uncertainty as game repeats when the coefficient of round is smaller than (greater than) zero, and the p-value of the coefficient is less than 0.05. 

 

32



Table B.4. Elasticity to Round and Cognitive Uncertainty
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Table B.4: Elasticity to Round and Cognitive Uncertainty 
 

 Dependent Variable:  
Percentage of Contribution 

Treatment  Pooled   Baseline  Adviser GPT 

Game All First Restart All First Restart Restart Restart 

 (1) (2) (3) (4) (5) (6) (7) (8) 

         

Round -0.57*** -1.59*** -0.95*** -0.84*** -1.59*** -0.29 -1.06** -1.56*** 
(0.14) (0.38) (0.23) (0.25) (0.38) (0.32) (0.41) (0.44) 

         

Round × Cognitive 
uncertainty  

-0.01 -0.01 -0.01 -0.01 -0.01 -0.03* -0.01 0.00 
(0.00) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) 

         
Cognitive 
uncertainty 

0.29*** 0.27** 0.33** 0.28*** 0.27** 0.66** 0.24 0.16 
(0.07) (0.11) (0.14) (0.10) (0.11) (0.28) (0.24) (0.21) 

         

Average Lagged 
group members’ % 
contribution 

0.21*** 0.20*** 0.15*** 0.21*** 0.20*** 0.17*** 0.16*** 0.11 

(0.03) (0.04) (0.04) (0.04) (0.04) (0.05) (0.06) (0.07) 
         

Observations 2,656 1,259 1,397 1,698 1,259 439 478 480 
R-squared 0.59 0.64 0.68 0.60 0.64 0.70 0.76 0.56 
Notes. Subject level fixed effect OLS estimates, with robust standard errors (in parentheses) are clustered at the 
subject level, controlling for lagged average contribution from group members . Column (1)-(3) pooled all data in all 
groups and treatment but separate them by the game. Column (4)-(6) include all the data in Treatment Baseline. 
Specifically, Column (5) include data from all treatment in the First game, while Column (6) only include data from 
Group Baseline in the Restart Game. Column (7)-(8) restrict attention to the decisions in the Restart Game of Group 
Adviser and Group GPT, respectively. *** p<0.01, ** p<0.05, * p<0.1 
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Table B.5. Absolute Deviation from Cognitive Default with regards to Cognitive Uncertainty
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Table B.5: Absolute Deviation from Cognitive Default with regards to Cognitive uncertainty 
 

 Dependent Variable:  
Absolute Contribution Deviation from 65% of the Endowment 

Treatment  Pooled   Baseline  Adviser GPT 

Game All First Restart All First Restart Restart Restart 

 (1) (2) (3) (4) (5) (6) (7) (8) 

         

Cognitive 
Uncertainty 

-0.20*** -0.18*** -0.21*** -0.18*** -0.18*** -0.22*** -0.17** -0.24*** 
(0.04) (0.04) (0.04) (0.04) (0.04) (0.07) (0.08) (0.06) 

         
Average 
Lagged 
group 
members’ % 
contribution 

-0.24*** -0.23*** -0.19*** -0.24*** -0.23*** -0.18*** -0.20*** -0.19*** 

(0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.05) (0.06) 
         
Observations 2,656 1,259 1,397 1,698 1,259 439 478 480 
R-squared 0.14 0.14 0.13 0.14 0.14 0.14 0.10 0.15 
Number of 
Subject 140 140 140 140 140 44 48 48 

Notes. Fixed effects model with cluster-robust standard errors for panels nested within subject level, controlling 
for lagged average contribution from group members. Column (1)-(3) pooled all data in all groups and treatment 
but separate them by the game. Column (4)-(6) include all the data in Treatment Baseline. Specifically, Column 
(5) include data from all treatment in the First game, while Column (6) only include data from Group Baseline in 
the Restart Game. Column (7)-(8) restrict attention to the decisions in the Restart Game of Group Adviser and 
Group GPT, respectively. *** p<0.01, ** p<0.05, * p<0.1 
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Table B.6. Summary Statistics of Cognitive Uncertainty by Contribution Level
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Table B.6 Summary Statistics of Cognitive Uncertainty by Contribution Level 

 

 Percentage of 
Contribution  

  N   Mean   SD   Min   Max 

 0 1204 15.174 23.056 0 100 
 5 150 20.267 26.520 0 100 
 10 193 23.938 26.907 0 100 
 15 151 26.887 22.066 0 100 
 20 90 27.222 21.931 0 90 
 25 278 26.691 22.219 0 100 
 30 68 35.294 27.179 0 100 
 35 55 32.545 20.836 0 80 
 40 112 33.125 20.622 0 100 
 45 36 25.278 23.602 0 90 
 50 223 27.04 25.009 0 100 
 55 18 23.333 14.142 0 50 
 60 24 25.833 15.857 0 70 
 65 32 39.062 36.576 0 100 
 70 5 50 23.452 30 90 
 75 45 30.222 22.104 0 80 
 80 2 0 0.000 0 0 
 85 2 25 21.213 10 40 
 90 10 26 22.706 0 70 
 95 1 20 0 20 20 
 100 99 16.869 27.945 0 100 

 

 
 

 
 

Table B.7: Percentage of Contribution with respect to Cognitive Uncertainty 
 

 Dependent Variable:  
Percentage of Contribution 

Treatment   Pooled     Baseline   Adviser GPT 

Game All First Restart All First Restart Restart Restart 

 (1) (2) (3) (4) (5) (6) (7) (8) 

         

Cognitive 
Uncertainty 

0.23*** 0.21** 0.22*** 0.22*** 0.21** 0.24*** 0.20** 0.24*** 
(0.05) (0.08) (0.05) (0.07) (0.08) (0.08) (0.09) (0.07) 

         

Observations 2,798 1,399 1,399 1,839 1,399 440 479 480 
R-squared 0.04 0.03 0.06 0.03 0.03 0.06 0.06 0.05 
Number of 
Subject 140 140 140 140 140 44 48 48 
Notes. Fixed effects model with cluster-robust standard errors for panels nested within subject level. Column 
(1)-(3) pooled all data in all groups and treatment but separate them by the game. Column (4)-(6) include all 
the data in Treatment Baseline. Specifically, Column (5) include data from all treatment in the First game, 
while Column (6) only include data from Group Baseline in the Restart Game. Column (7)-(8) restrict attention 
to the decisions in the Restart Game of Group Adviser and Group GPT, respectively. *** p<0.01, ** p<0.05, 
* p<0.1. 
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 Dependent Variable:  
Percentage of Contribution 

Treatment   Pooled     Baseline   Adviser GPT 

Game All First Restart All First Restart Restart Restart 

 (1) (2) (3) (4) (5) (6) (7) (8) 

         

Cognitive 
Uncertainty 

0.23*** 0.21** 0.22*** 0.22*** 0.21** 0.24*** 0.20** 0.24*** 
(0.05) (0.08) (0.05) (0.07) (0.08) (0.08) (0.09) (0.07) 

         

Observations 2,798 1,399 1,399 1,839 1,399 440 479 480 
R-squared 0.04 0.03 0.06 0.03 0.03 0.06 0.06 0.05 
Number of 
Subject 140 140 140 140 140 44 48 48 
Notes. Fixed effects model with cluster-robust standard errors for panels nested within subject level. Column 
(1)-(3) pooled all data in all groups and treatment but separate them by the game. Column (4)-(6) include all 
the data in Treatment Baseline. Specifically, Column (5) include data from all treatment in the First game, 
while Column (6) only include data from Group Baseline in the Restart Game. Column (7)-(8) restrict attention 
to the decisions in the Restart Game of Group Adviser and Group GPT, respectively. *** p<0.01, ** p<0.05, 
* p<0.1. 
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Table B.8. Is Declining Contribution due to Confusion or Frustrated Attempts at Kindness?
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Table B.8: Is declining contribution due to confusion or frustrated attempts at kindness? 
 

 Dependent Variable:  
Percentage of Contribution 

Treatment   Pooled     Baseline   Adviser GPT 

Game All First Restart All First Restart Restart Restart 

 (1) (2) (3) (4) (5) (6) (7) (8) 

         

Round -0.69*** -1.70*** -1.16*** -0.94*** -1.70*** -0.79** -1.22*** -1.55*** 
 (0.11) (0.29) (0.18) (0.22) (0.29) (0.30) (0.30) (0.34) 
         
Cognitive 
Uncertainty 

0.22*** 0.24*** 0.18*** 0.24*** 0.24*** 0.23*** 0.13* 0.16** 
(0.04) (0.07) (0.04) (0.06) (0.07) (0.07) (0.08) (0.06) 

         
Average 
Lagged 
group 
members’ % 
contribution 

0.21*** 0.20*** 0.15*** 0.22*** 0.20*** 0.17*** 0.16*** 0.11 

(0.03) (0.04) (0.04) (0.04) (0.04) (0.05) (0.06) (0.07) 
         
Observations 2,656 1,259 1,397 1,698 1,259 439 478 480 
R-squared 0.59 0.64 0.68 0.60 0.64 0.70 0.76 0.56 
Notes. Fixed effects model with cluster-robust standard errors for panels nested within subject level. Column (1)-
(3) pooled all data in all groups and treatment but separate them by the game. Column (4)-(6) include all the data 
in Treatment Baseline. Specifically, Column (5) include data from all treatment in the First game, while Column 
(6) only include data from Group Baseline in the Restart Game. Column (7)-(8) restrict attention to the decisions 
in the Restart Game of Group Adviser and Group GPT, respectively. *** p<0.01, ** p<0.05, * p<0.1. 
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Table B.9. Summary Statistics on the Coefficients of Contribution (Left) and Cognitive
Uncertainty (Right)
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Table B.9: Summary Statistics on the Coefficients of Contribution (Left) and Cognitive Uncertainty (Right) 
 

 N Mean SD Min Max  N Mean SD Min Max 
 

Pooled, All rounds, Total Subjects = 140, cognitive uncertainty makes participants: 
contribute more 

40 0.726 0.451 0.0700 2.370 
 

40 26.27 15.97 1 68.50 
contribute less 

5 -0.824 0.426 -1.470 -0.390 
 

5 48.10 28.19 6 79.50 
            

Pooled, First game, Total Subjects = 140, cognitive uncertainty makes participants: 
contribute more 

25 0.922 0.468 0.260 2.250 
 

25 24.14 16.66 1 68.50 
contribute less 

11 -1.056 0.375 -1.680 -0.610 
 

11 41.45 19.68 6 79.50 
            

Pooled, Restart game, Total Subjects = 140, cognitive uncertainty makes participants: 
contribute more 

27 0.895 0.712 0.250 3.890 
 

27 23.72 14.79 5 67.50 
contribute less 

5 -0.756 0.692 -1.800 -0.0700 
 

5 53.30 23.35 19.50 79.50 
            

Treatment Baseline, All rounds, Total Subjects = 44, cognitive uncertainty makes participants: 
contribute more 

15 0.760 0.529 0.320 2.370 
 

15 26.57 16.65 1 67.50 
contribute less 

2 -0.575 0.262 -0.760 -0.390 
 

2 25.75 27.93 6 45.50 
            

Treatment Baseline, First game, Total Subjects = 44, cognitive uncertainty makes participants: 
contribute more 

9 0.872 0.601 0.260 2.250 
 

9 22.61 14.80 1 43.50 
contribute less 

3 -1.063 0.413 -1.540 -0.810 
 

3 30.33 21.29 6 45.50 
            

Treatment Baseline, Restart game, Total Subjects = 44, cognitive uncertainty makes participants: 
contribute more 

9 0.763 0.452 0.250 1.450 
 0     

contribute less 
9 27.78 16.88 9.500 67.50 

 0     

            

Treatment Adviser, Restart game, Total Subjects = 48, cognitive uncertainty makes participants: 
contribute more 8 0.774 0.284 0.330 1.360  8 25.75 13.64 11.50 48.50 

contribute less 2 -0.840 0.255 -1.020 -0.660  2 60.75 26.52 42 79.50 

            

Treatment GPT, Restart game, Total Subjects = 48, cognitive uncertainty makes participants: 
contribute more 10 1.111 1.066 0.330 3.890  10 18.45 13.52 5 49 

contribute less 3 -0.700 0.956 -1.800 -0.0700  3 48.33 25.42 19.50 67.50 
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Table B.10. Treatment Effect on Contribution

 42 

Table B.10a: Treatment Effect on Contribution 
 

GPT  Pooled   Inexperienced   Experienced  

Treatment  GPT Adviser GPT GPT Adviser GPT GPT Adviser GPT 
Control  Baseline Baseline Adviser Baseline Baseline Adviser Baseline Baseline Adviser 
Sample in Restart Game (1) (2) (3) (4) (5) (6) (7) (8) (9) 

          

DID (Round<=1) 9.566* 9.103** 0.176 3.858 9.944 -5.790 13.23** 8.814 3.888 
 (4.834) (4.236) (4.556) (6.980) (6.308) (6.841) (6.586) (5.709) (6.027) 
N 918 918 960 400 370 370 518 548 590 
Parallel test p value 0.637 0.762 0.787 0.724 0.869 0.653 0.363 0.759 0.495 
          
DID (Round<=2) 7.786* 7.582** -0.198 6.095 7.753 -1.455 8.631* 7.429 0.572 
 (4.113) (3.645) (3.439) (7.007) (5.378) (6.235) (5.030) (4.954) (3.900) 
N 1,010 1,010 1,056 440 407 407 570 603 649 
Parallel test p value 0.638 0.758 0.782 0.728 0.867 0.681 0.363 0.755 0.496 
          
DID (Round<=3) 5.712 6.069* -0.581 2.920 4.428 -1.385 7.788* 7.491* -0.128 
 (3.762) (3.403) (2.957) (6.885) (5.465) (5.609) (4.110) (4.255) (3.149) 
N 1,102 1,102 1,152 480 444 444 622 658 708 
Parallel test p value 0.627 0.758 0.773 0.759 0.869 0.690 0.363 0.756 0.494 
          
DID (Round<=4) 4.912 5.228 -0.453 2.740 4.427 -1.619 6.545* 6.059 0.201 
 (3.668) (3.252) (2.831) (6.904) (5.339) (5.534) (3.830) (3.965) (2.867) 
N 1,194 1,194 1,248 520 481 481 674 713 767 
Parallel test p value 0.624 0.759 0.781 0.773 0.871 0.692 0.364 0.754 0.497 
          
DID (Round<=5) 4.673 4.833 -0.319 2.957 3.695 -0.703 6.007 5.908 -0.187 
 (3.448) (3.201) (2.567) (6.309) (5.188) (4.648) (3.764) (3.926) (2.882) 
N 1,286 1,286 1,344 560 518 518 726 768 826 
Parallel test p value 0.625 0.761 0.782 0.773 0.872 0.682 0.364 0.756 0.496 
          
Note. Average treatment effect on the treated (ATET) from observational data by difference in difference for panel data, that additionally control for the lagged average 
contribution from the group members, with robust standard error clustered (in parentheses) clustered at subject level. Estimate adjusted for covariates, panel effects, and 
time effects, and robust standard error cluster at subject level. Row parallel test p value reports the p value for parallel trends test (at round <=10) that the null hypothesis 
is linear trends are parallel. *** p<0.01, ** p<0.05, * p<0.1 
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Table B.11. Treatment Effect on Contribution, contd.
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Table B.10b: Treatment Effect on Contribution 
 

GPT  Pooled   Inexperienced   Experienced  

Treatment  GPT Adviser GPT GPT Adviser GPT GPT Adviser GPT 
Control  Baseline Baseline Adviser Baseline Baseline Adviser Baseline Baseline Adviser 
Sample in Restart Game (1) (2) (3) (4) (5) (6) (7) (8) (9) 

          

DID (Round<=6) 3.975 4.266 -0.438 2.637 3.148 -0.497 5.017 5.328 -0.527 
 (3.329) (3.132) (2.368) (5.995) (5.092) (4.096) (3.708) (3.833) (2.781) 
N 1,378 1,377 1,439 600 555 555 778 822 884 
Parallel test p value 0.625 0.760 0.789 0.773 0.874 0.679 0.364 0.753 0.498 
          
DID (Round<=7) 2.843 3.458 -0.657 1.303 2.630 -1.242 4.032 4.381 -0.431 
 (3.188) (3.022) (2.276) (5.620) (4.838) (3.829) (3.670) (3.762) (2.746) 
N 1,470 1,468 1,534 640 592 592 830 876 942 
Parallel test p value 0.626 0.753 0.803 0.770 0.871 0.662 0.364 0.746 0.502 

          
DID (Round<=8) 2.441 3.295 -0.858 0.657 1.905 -1.167 3.883 4.617 -0.764 
 (3.197) (2.969) (2.339) (5.818) (4.849) (4.104) (3.513) (3.611) (2.715) 
N 1,562 1,560 1,630 680 629 629 882 931 1,001 
Parallel test p value 0.624 0.753 0.804 0.777 0.871 0.667 0.365 0.745 0.503 

          
DID (Round<=9) 2.278 3.290 -1.021 0.257 1.872 -1.504 3.854 4.639 -0.807 
 (3.168) (2.958) (2.288) (5.767) (4.963) (4.008) (3.432) (3.484) (2.677) 
N 1,654 1,652 1,726 720 666 666 934 986 1,060 
Parallel test p value 0.624 0.754 0.802 0.773 0.872 0.680 0.365 0.745 0.504 
          
DID (Round<=10) 2.291 3.403 -1.119 -0.0983 2.060 -2.016 4.169 4.711 -0.605 
 (3.134) (2.938) (2.282) (5.758) (5.039) (3.943) (3.328) (3.364) (2.712) 
N 1,746 1,744 1,822 760 703 703 986 1,041 1,119 
Parallel test p value 0.625 0.755 0.798 0.779 0.873 0.688 0.365 0.746 0.503 
          

Note. Average treatment effect on the treated (ATET) from observational data by difference in difference for panel data, that additionally control for the lagged average 
contribution from the group members, with robust standard error clustered (in parentheses) clustered at subject level. Estimate adjusted for covariates, panel effects, and 
time effects, and robust standard error cluster at subject level. Row parallel test p value reports the p value for parallel trends test (at round <=10) that the null hypothesis is 
linear trends are parallel. *** p<0.01, ** p<0.05, * p<0.1 
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Table B.12. Treatment Effect on Cognitive Uncertainty

 44 

Table B.11a: Treatment Effect on Cognitive Uncertainty 
 

GPT  Pooled   Inexperienced   Experienced  

Treatment  GPT Adviser GPT GPT Adviser GPT GPT Adviser GPT 
Control  Baseline Baseline Adviser Baseline Baseline Adviser Baseline Baseline Adviser 
Sample in Restart Game (1) (2) (3) (4) (5) (6) (7) (8) (9) 

          

DID (Round<=1) 6.777* 8.125** -1.338 10.87** 5.549 5.114 3.952 9.441 -5.657 
 (3.540) (3.754) (3.514) (5.170) (4.009) (5.440) (5.194) (5.898) (4.341) 
N 918 918 960 400 370 370 518 548 590 
Parallel test p value 0.652 0.934 0.601 0.616 0.417 0.608 0.857 0.466 0.297 
          
DID (Round<=2) 4.817* 4.594* 0.177 6.667 1.278 5.386 3.681 6.582 -3.170 
 (2.824) (2.678) (2.860) (4.684) (2.983) (4.684) (3.742) (4.034) (3.482) 
N 1,010 1,010 1,056 440 407 407 570 603 649 
Parallel test p value 0.651 0.935 0.594 0.616 0.416 0.635 0.856 0.466 0.297 
          
DID (Round<=3) 3.515 3.987 -0.508 1.388 0.106 1.331 5.570* 7.001* -1.747 
 (2.514) (2.428) (2.417) (4.011) (3.023) (4.124) (3.319) (3.507) (2.928) 
N 1,102 1,102 1,152 480 444 444 622 658 708 
Parallel test p value 0.644 0.930 0.583 0.591 0.420 0.654 0.858 0.461 0.295 
          
DID (Round<=4) 4.549* 4.075* 0.396 2.771 2.737 -0.0322 6.234* 5.467* 0.521 
 (2.388) (2.259) (2.331) (3.850) (3.109) (4.235) (3.185) (3.230) (2.703) 
N 1,194 1,194 1,248 520 481 481 674 713 767 
Parallel test p value 0.648 0.929 0.586 0.604 0.426 0.661 0.859 0.464 0.295 
          
DID (Round<=5) 4.269* 4.359** -0.178 1.495 3.330 -1.858 6.701** 5.635* 0.747 
 (2.263) (2.190) (2.255) (3.618) (3.254) (4.166) (3.001) (2.992) (2.599) 
N 1,286 1,286 1,344 560 518 518 726 768 826 
Parallel test p value 0.649 0.929 0.583 0.605 0.424 0.666 0.859 0.462 0.296 
          
Note. Average treatment effect on the treated (ATET) from observational data by difference in difference for panel data, that additionally control for the lagged 
average contribution from the group members, with robust standard error clustered (in parentheses) clustered at subject level. Estimate adjusted for covariates, panel 
effects, and time effects, and robust standard error cluster at subject level. Row parallel test p value reports the p value for parallel trends test (at round <=10) that the 
null hypothesis is linear trends are parallel. *** p<0.01, ** p<0.05, * p<0.1 
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Table B.13. Treatment Effect on Cognitive Uncertainty, contd.
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Table B.11b: Treatment Effect on Cognitive Uncertainty 
 

GPT  Pooled   Inexperienced   Experienced  

Treatment  GPT Adviser GPT GPT Adviser GPT GPT Adviser GPT 
Control  Baseline Baseline Adviser Baseline Baseline Adviser Baseline Baseline Adviser 
Sample in Restart Game (1) (2) (3) (4) (5) (6) (7) (8) (9) 

          

DID (Round<=6) 3.649 3.895* -0.292 0.157 3.385 -3.199 6.639** 4.974* 1.363 
 (2.204) (2.255) (2.210) (3.356) (3.619) (4.270) (3.010) (2.954) (2.460) 
N 1,378 1,377 1,439 600 555 555 778 822 884 
Parallel test p value 0.650 0.933 0.587 0.610 0.419 0.656 0.859 0.463 0.297 
          
DID (Round<=7) 3.039 3.234 -0.250 -0.664 3.426 -4.052 6.160* 3.891 1.924 
 (2.235) (2.336) (2.152) (3.217) (3.633) (4.125) (3.160) (3.135) (2.404) 
N 1,470 1,468 1,534 640 592 592 830 876 942 
Parallel test p value 0.650 0.932 0.583 0.615 0.415 0.640 0.858 0.459 0.295 

          
DID (Round<=8) 2.141 2.367 -0.270 -1.789 3.385 -5.145 5.375* 2.535 2.553 
 (2.246) (2.332) (2.099) (3.175) (3.585) (3.965) (3.196) (3.131) (2.339) 
N 1,562 1,560 1,630 680 629 629 882 931 1,001 
Parallel test p value 0.648 0.931 0.582 0.612 0.415 0.638 0.859 0.457 0.294 

          
DID (Round<=9) 2.121 1.861 0.185 -2.122 3.337 -5.507 5.634* 1.869 3.491 
 (2.353) (2.403) (2.154) (3.391) (3.612) (4.025) (3.312) (3.233) (2.380) 
N 1,654 1,652 1,726 720 666 666 934 986 1,060 
Parallel test p value 0.641 0.924 0.577 0.594 0.424 0.658 0.861 0.455 0.293 

          
DID (Round<=10) 1.506 1.604 -0.185 -3.619 2.603 -6.272 5.664* 1.966 3.422 
 (2.415) (2.481) (2.206) (3.535) (3.775) (4.103) (3.324) (3.290) (2.449) 
N 1,746 1,744 1,822 760 703 703 986 1,041 1,119 
Parallel test p value 0.641 0.922 0.574 0.600 0.422 0.651 0.862 0.452 0.292 
          

Note. Average treatment effect on the treated (ATET) from observational data by difference in difference for panel data, that additionally control for the lagged 
average contribution from the group members, with robust standard error clustered (in parentheses) clustered at subject level. Estimate adjusted for covariates, 
panel effects, and time effects, and robust standard error cluster at subject level. Row parallel test p value reports the p value for parallel trends test (at round <=10) 
that the null hypothesis is linear trends are parallel. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix C Instruction

The following pages show the screenshot for the experiment. For those without bracket, it means

that the page is showed to all treatment.
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Appendix C. Instruction 
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[Group Baseline] 
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[Group Adviser] 
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[Group GPT, link = https://en.wikipedia.org/wiki/GPT-3] 
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[all] 
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Appendix D GPT Prompt in Public goods game

The following shows the prompt we give to GPT on 14 June 2023, using GPT-3.5-turbo model.

System role: “I want you to act as a human decision maker. You will be given 10 rounds

of decision-making tasks, and will be responsible for making decisions. You should use your best

judgement to come up with a solution that you like the most. My first request is: You should

provide your answer in every round. If you do not provide an answer, I will assume that you make

a random choice. This prompt serves as the background information for the user prompt later. No

answer from this prompt is required.”

Assistant role: “In every round, the decision maker is randomly matched with 3 other new

subjects to form a group of 4 and there is no feedback across rounds, as feedback is trivial. Every

member of the group needs to decide how many of the 20 points he/she wants to contribute to

the group project. The contribution to the group project must be an integer between 0 and 20

(including 0 and 20). All contributions to the group project will be multiplied by 1.6, and split

evenly among the 4 group members, yielding the return from the group project for each member. In

every round, each member’s payoff will be the sum of the part of the 20 points endowment he/she

keeps for himself/herself (i.e., did not contribute to the group project), plus the return he/she gets

from the group project. Please do not assume other group members will make the same contribution

to the group project as you do. This prompt serves as the background information for the user

prompt later. No answer from this prompt is required.”

User role: In Round N ∈ [1, 10], How many points would you like to contribute to the group

project? How many points you keep for yourself? Please input the answers in integer between 0 to

20 (include 0 and 20).

Table D.1. Descriptive statistics

N Mean SD Range

All sample 150 12.64 4.32 0–20
Temperature = 0 50 11.26 4.55 0–20
Temperature = 0.5 50 13.72 4.38 8–20
Temperature = 1 50 12.94 3.69 8–20
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Appendix E Complexity Experiments

Appendix E.1 Experimental Design

The main study focuses on the correlational relationship between cognitive uncertainty and con-

tribution behavior. In this causal study, we implement additional treatment arms in this section

to manipulate the complexity of the task by displaying the efficiency factor in a mathematical

equation. The complexity experiments are conducted following a similar fashion as in Enke et al.

(2023). Specifically, we have made several changes to the design of the complexity experiments.

First, we no longer conduct the Treatment Baseline in the first game, nor do we include a

surprise restart; instead, we impose the treatment from the beginning. This change is due to the

first 10 rounds potentially lowering participants’ cognitive uncertainty as they learn. Therefore,

even if the causal implementation is successful, we may still not be able to observe a significant

increase in cognitive uncertainty. Instead, we now have all groups in the Complexity Experiments

engage in only 10 rounds of the game.

Secondly, we vary the multiplier in each round and control its effect in our regression. An

alternative approach would be to apply different equations for the same multiplier, say M = 1.6.

While this allows us to make comparisons with our treatment in the main design, it can make the

setting feel unnatural, and, more importantly, it exposes us to the risk of annoying the subjects

because they might feel as though they have been misled once they discover the truth.

We design two treatment groups in the Complexity Experiment. The screenshot of the interface

can be found in Figure E.1.

In the Treatment Complexity Number, we vary the multiplier over 10 rounds. The multiplier

does not differ significantly from that in the Treatment Baseline, where it ranges between 1.1 and

2.0, or, equivalently, a maximum difference of 0.225 in MPCR. The specific configuration of the

multiplier can be found in Table E.1.

In the Treatment Complexity Equation, we incorporate the multiplier into a complex mathem-

atical equation and impose a 25-second time limit on decision-making12. This setup aligns with

the complexity treatment described in Enke et al. (2023), which aims to prevent participants from

spending significantly more time on task completion, potentially resulting in the absence of a sig-

nificant effect on cognitive uncertainty. We formulate the hypothesis in Experiment Complexity as

follows:

Hypothesis E1: A manipulation on the complexity of the multiplier increases cognitive uncer-

tainty.

Hypothesis E2: A manipulation on the complexity of the multiplier increases contribution.

12The management for when timeout happens follows all the other treatment in this paper, as discussed in Table B.2
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Appendix E. Complexity Experiments 

E.1 Experimental Design 

 

Figure E.1: Screenshot of an example decision screen in Complexity Number (upper panel) and Complexity 
Equation (bottom panel).  

 

The main study focuses on the correlational relationship between cognitive uncertainty and 

contribution behavior. In this causal study, we implement additional treatment arms in this 

section to manipulate the complexity of the task by displaying the efficiency factor in a 

mathematical equation. The complexity experiments are conducted following a similar fashion 

Figure E.1. Screenshot of an example decision screen in Complexity Number (upper panel) and
Complexity Equation (bottom panel).
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Table E.1. Equations with Round and Multiplier

Round Multiplier Equation

1 1.4 4 ∗ 6/20 + 8 ∗ 9− 52/100
2 1.2 0.6 ∗ 3/2 + 5 ∗ 0.08− 0.1
3 1.5 0.5 ∗ 6/5 + 2 ∗ 0.4 + 0.1
4 1.7 30 ∗ 5/100 + 8 ∗ 0.5/40 + 0.1
5 1.6 4 ∗ 2− 6− 4 ∗ 0.2 + 0.4
6 1.9 3 ∗ 0.9− 1.0 + 5 ∗ 6/100− 0.1
7 1.1 8 ∗ 0.6/2− 0.4 ∗ 5/2− 0.3
8 2.0 0.8 ∗ 3 + 0.6− 6 ∗ 0.5/2 + 0.5
9 1.3 (30 ∗ 5− 20)/((2.4 + 7.6) ∗ 10)
10 1.8 (20 ∗ 9− 90)/((6 + 4) ∗ 5)

Appendix E.2 Timeout Instances and Invalid Decisions in Complexity Equation
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Figure E.2. Histogram of number of timeout instance in Complexity Equation on the subject level

There are 48 subjects participate in each of the treatment.

The first finding is that due to the hard time binding in Treatment Complexity Equation, there

were 98 out of 480 instances where subjects failed to submit a contribution decision within the

25-second time limit in Complexity Equation.

As tabulated in Table E.2, each subject had approximately 2 instances out of 10 on average

where they failed to submit a contribution in time in the Complexity Equation. As showed in Figure

E.2, only 17 out of 48 subjects in the Complexity Equation managed to submit their contribution

decisions on time for all the periods, and there are 2 subjects failing to submit every decision. By

contrast, all subjects succeed to submit all contribution decisions in Complexity Number.
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Table E.2. Summary Statistics on Timeout Instance

 59 

contribution decisions on time for all the periods, and there are 2 subjects failing to submit 

every decision. By contrast, all subjects succeed to submit all contribution decisions in 

Complexity Number.  

The observation is supported by Table E.3 Column (1)14. We find that the failure to submit 

decisions on time is significantly higher in the Complexity Equation treatment. Meanwhile, 

there is a decreasing pattern of time out incidence as the game repeats. Consequently, subjects 

in Complexity Equation earned less than their counterparts in the Complexity Number, and it 

would require them a total of 2.42 minutes more (equivalent to 14.52 seconds more for each 

decision) to submit all their decisions in every round. 

 
Table E.3: Timeout, Completion Time, and Total Payoff across Treatments 

 

Dependent Variable Timeout  Completion Time (in Min) Total Payoff 
 (1) (2) (3) 

    
Round -0.01***   
 (0.00)   
    
1 if Complexity Equation 0.21*** -2.42*** -33.78*** 
 (0.04) (0.38) (11.45) 
    
Multiplier -0.01   
 (0.02)   
    
Observations 960 96 96 
R-Squared 0.20 0.38 0.24 
    

Note: OLS estimates with robust standard errors (in parentheses) are clustered at the subject level and OLS 
in column (1)-(2). Column (3)-(4) look at the difference in completion time and payoff when comparing the 
two treatments, controlling for the demographics variables including major, gender, age, whether received 
statistics training, experience with economics experiment, investment experiment, and use of GPT.. *** 
p<0.01, ** p<0.05, * p<0.1. 

 
14 It's important to note that we have excluded the control of lagged average contribution from other group 

members. This is because including the lagged payment control would require discarding observations from the 
first one periods, which is critical in this section when we vary multiplier in each round, because it would also 
entail discarding all observations with two unique multipliers.  

Table E.2: Summary Statistics on Timeout Instance 
 

 Observation Mean Standard Deviation Minimum Maximum 

      
No. of Timeout Instance 
Complexity Number 480 0 0 0 0 
Complexity Equation 480 0.204 0.404 0 1 
      
Average Timeout Instance Per Subject 
Complexity Number 48 0 0 0 0 
Complexity Equation 48 2.042 2.805 0 10 
      

Table E.3. Timeout, Completion Time, and Total Payoff across Treatments
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contribution decisions on time for all the periods, and there are 2 subjects failing to submit 

every decision. By contrast, all subjects succeed to submit all contribution decisions in 

Complexity Number.  

The observation is supported by Table E.3 Column (1)14. We find that the failure to submit 

decisions on time is significantly higher in the Complexity Equation treatment. Meanwhile, 

there is a decreasing pattern of time out incidence as the game repeats. Consequently, subjects 

in Complexity Equation earned less than their counterparts in the Complexity Number, and it 

would require them a total of 2.42 minutes more (equivalent to 14.52 seconds more for each 

decision) to submit all their decisions in every round. 

 
Table E.3: Timeout, Completion Time, and Total Payoff across Treatments 

 

Dependent Variable Timeout  Completion Time (in Min) Total Payoff 
 (1) (2) (3) 

    
Round -0.01***   
 (0.00)   
    
1 if Complexity Equation 0.21*** -2.42*** -33.78*** 
 (0.04) (0.38) (11.45) 
    
Multiplier -0.01   
 (0.02)   
    
Observations 960 96 96 
R-Squared 0.20 0.38 0.24 
    

Note: OLS estimates with robust standard errors (in parentheses) are clustered at the subject level and OLS 
in column (1)-(2). Column (3)-(4) look at the difference in completion time and payoff when comparing the 
two treatments, controlling for the demographics variables including major, gender, age, whether received 
statistics training, experience with economics experiment, investment experiment, and use of GPT.. *** 
p<0.01, ** p<0.05, * p<0.1. 

 
14 It's important to note that we have excluded the control of lagged average contribution from other group 

members. This is because including the lagged payment control would require discarding observations from the 
first one periods, which is critical in this section when we vary multiplier in each round, because it would also 
entail discarding all observations with two unique multipliers.  

Table E.2: Summary Statistics on Timeout Instance 
 

 Observation Mean Standard Deviation Minimum Maximum 

      
No. of Timeout Instance 
Complexity Number 480 0 0 0 0 
Complexity Equation 480 0.204 0.404 0 1 
      
Average Timeout Instance Per Subject 
Complexity Number 48 0 0 0 0 
Complexity Equation 48 2.042 2.805 0 10 
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The observation is supported by Table E.3 Column (1)13. We find that the failure to submit

decisions on time is significantly higher in the Complexity Equation treatment. Meanwhile, there

is a decreasing pattern of time out incidence as the game repeats. Consequently, subjects in

Complexity Equation earned less than their counterparts in the Complexity Number, and it would

require them a total of 2.42 minutes more (equivalent to 14.52 seconds more for each decision) to

submit all their decisions in every round.

Appendix E.3 Non-binding Complexity Equation Soft

In response to the high incidence of missing values in the Complexity Equation treatment, we

introduced an additional treatment called Complexity Equation Soft. In this treatment, subjects

were provided with a non-binding time limit of 25 seconds to submit their decisions. An example

screenshot can be found in Figure E.3. Subjects were still required to calculate the multiplier using

a complex mathematical equation, similar to that in the Complexity treatment. However, in this

case, they would not receive a payment of zero, and the page would not be automatically submitted,

if they failed to input a contribution within 25 seconds. Instead, a pop-up window would notify

them that their time had run out, and they needed to make a decision as soon as possible. A total

of 40 subjects participate in the treatment.
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In response to the high incidence of missing values in the Complexity Equation treatment, we 

introduced an additional treatment called Complexity Equation Soft. In this treatment, subjects 

were provided with a non-binding time limit of 25 seconds to submit their decisions. An 

example screenshot can be found in Figure E.3. Subjects were still required to calculate the 

multiplier using a complex mathematical equation, similar to that in the Complexity treatment. 

However, in this case, they would not receive a payment of zero, and the page would not be 

automatically submitted, if they failed to input a contribution within 25 seconds. Instead, a pop-

up window would notify them that their time had run out, and they needed to make a decision 

as soon as possible. A total of 40 subjects participate in the treatment. 

 

Figure E.3: Screenshot of an example decision screen in Complexity Equation Soft Timeout  (upper panel) and 

the interface when time has run out (bottom panel). 

 

E.5 Experimental Results 

We depict the average cognitive uncertainty and contribution across the treatment In Figure 

E.4. Both contribution and cognitive uncertainty is the highest in Complexity Equation Soft, 

and lowest in Complexity Number. Overall, we fail to find a significant difference between 

Complexity equation and Complexity Number on cognitive uncertainty (t-test: t=-0.1163, 

p=0.9074; Rank-sum: z=0.932, p=0.3513). However, we do find that the cognitive uncertainty 

is higher in Complexity Equation Soft than that of Complexity Number (t-test:  t= 2.3737, 

p=0.0178; Rank-sum: z=2.009, p=0.0446). And the contribution in the both Complexity 

Equation (t-test: t=4.1164, p=0.0000; Rank-sum: z=3.400, p=0.0007) and Complexity 

Figure E.3. Screenshot of an example decision screen in Complexity Number (upper panel) and
Complexity Equation (bottom panel).

13It’s important to note that we have excluded the control of lagged average contribution from other group members.
This is because including the lagged payment control would require discarding observations from the first one periods,
which is critical in this section when we vary multiplier in each round, because it would also entail discarding all
observations with two unique multipliers.
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Appendix E.4 Experimental Results

We depict the average cognitive uncertainty and contribution across the treatment In Figure E.4.

Both contribution and cognitive uncertainty is the highest in Complexity Equation Soft, and lowest

in Complexity Number. Overall, we fail to find a significant difference between Complexity equa-

tion and Complexity Number on cognitive uncertainty (t-test: t=-0.1163, p=0.9074; Rank-sum:

z=0.932, p=0.3513). However, we do find that the cognitive uncertainty is higher in Complexity

Equation Soft than that of Complexity Number (t-test: t= 2.3737, p=0.0178; Rank-sum: z=2.009,

p=0.0446). And the contribution in the both Complexity Equation (t-test: t=4.1164, p=0.0000;

Rank-sum: z=3.400, p=0.0007) and Complexity Equation Soft (t-test: t=8.0275, p=0.0000; Rank-

sum: z=8.329, p=0.0000) is significantly higher than that of Complexity Number.

0
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Complexity Number Complexity Equation Complexity Equation Soft

Cognitive Uncertainty Percentage of Contribution

Figure E.4. Screenshot of an example decision screen in Complexity Number (upper panel) and
Complexity Equation (bottom panel).

In summary, all the mean comparisons are consistent with our hypothesis, where complex math-

ematical function manipulation would increase both cognitive uncertainty and contribution; except

for the comparison between Complexity Equation and Complexity Number regarding cognitive un-

certainty. However, intuitively, a complex mathematical function manipulation with an additional

binding time limit should lead to a larger cognitive uncertainty due to the consequence of zero

payoff. Therefore, we conclude that the insignificant result is likely due to attrition in data collec-

tion when subjects become too confused about the task. Consequently, we failed to collect data on

cognitive uncertainty and contribution when this confusion occurred.

Result E.1: When manipulating the multiplier to be more complicated in a between-subject fashion,

it leads subjects to be more cognitively uncertain about their contribution decision.

Figure E.5 visualizes the contribution pattern, and Table E.4 summarizes the results. In support

of our hypothesis, we find that a complexity manipulation increases contribution, as illustrated by

the higher reddish dots in Figure E.5 compared to the blue dots. This observation aligns with
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the positive coefficient of the complexity manipulation as shown in the OLS estimates in Columns

(1) and (2) of Table E.4. Similarly, the negative coefficient in Columns (5) and (6) indicates that

contributions are closer to half of the endowment when the multiplier is in the form of a complicated

function. However, the result is not statistically significant in the Complexity Equation treatment,

probably due to are attritions in the contribution decisions as discussed.

Furthermore, the contribution is positively correlated with the multiplier, but the inelasticity

pattern, as indicated by the coefficient of the interaction term, is not statistically significant at the

5% level. This is possibly due to our design, where the contribution in our configuration is smaller

than half of the endowment even without cognitive uncertainty. In turn, cognitive uncertainty

would only make the contribution decision shift closer to the default (i.e., increase), not decrease.

Hence, we were unable to identify an inelastic pattern.

Result E2: When manipulating the multiplier to be more complicated in a between-subject fashion,

it leads subjects to contribute at a higher level that is closer to the cognitive default of half-of-

endowment.
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Figure E.5. Percentage of Contribution in Complexity Number (Number of Subjects = 48), Complexity
Equation (Number of Subjects = 46, where 2 subject do not submit any contribution decision), and
Complexity Equation Soft (Number of Subjects = 40). Percentage of contribution are computed using
their contribution divided by endowment of 20 points. Whiskers show standard error bars.
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Table E.4. Complexity Manipulations
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contribution decisions on time for all the periods, and there are 2 subjects failing to submit 

every decision. By contrast, all subjects succeed to submit all contribution decisions in 

Complexity Number.  

The observation is supported by Table E.3 Column (1)14. We find that the failure to submit 

decisions on time is significantly higher in the Complexity Equation treatment. Meanwhile, 

there is a decreasing pattern of time out incidence as the game repeats. Consequently, subjects 

in Complexity Equation earned less than their counterparts in the Complexity Number, and it 

would require them a total of 2.42 minutes more (equivalent to 14.52 seconds more for each 

decision) to submit all their decisions in every round. 

 
Table E.3: Timeout, Completion Time, and Total Payoff across Treatments 

 

Dependent Variable Timeout  Completion Time (in Min) Total Payoff 
 (1) (2) (3) 

    
Round -0.01***   
 (0.00)   
    
1 if Complexity Equation 0.21*** -2.42*** -33.78*** 
 (0.04) (0.38) (11.45) 
    
Multiplier -0.01   
 (0.02)   
    
Observations 960 96 96 
R-Squared 0.20 0.38 0.24 
    

Note: OLS estimates with robust standard errors (in parentheses) are clustered at the subject level and OLS 
in column (1)-(2). Column (3)-(4) look at the difference in completion time and payoff when comparing the 
two treatments, controlling for the demographics variables including major, gender, age, whether received 
statistics training, experience with economics experiment, investment experiment, and use of GPT.. *** 
p<0.01, ** p<0.05, * p<0.1. 

 
14 It's important to note that we have excluded the control of lagged average contribution from other group 

members. This is because including the lagged payment control would require discarding observations from the 
first one periods, which is critical in this section when we vary multiplier in each round, because it would also 
entail discarding all observations with two unique multipliers.  

Table E.2: Summary Statistics on Timeout Instance 
 

 Observation Mean Standard Deviation Minimum Maximum 

      
No. of Timeout Instance 
Complexity Number 480 0 0 0 0 
Complexity Equation 480 0.204 0.404 0 1 
      
Average Timeout Instance Per Subject 
Complexity Number 48 0 0 0 0 
Complexity Equation 48 2.042 2.805 0 10 
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Appendix F Experiment Robustness

Appendix F.1 Motivation

The motivation behind this experiment is to address concerns that strategic uncertainty (Mes-

sick et al., 1988; Gangadharan and Nemes, 2009) may be misinterpreted as part of the cognitive

uncertainty being measured.

The variable of interest, cognitive uncertainty, occurs when participants are unsure about their

prosocial preferences or the utility-maximizing action in the public goods game that reflects their

true social preferences. The main result in our study is that a higher cognitive uncertainty is coupled

with a higher contribution. By contrast, strategic uncertainty arises due to unknown information

about the decisions of others, i.e., individuals may be uncertain about the public good or resource

requests in the common pool resource experiment as they do not know how other group members

will behave14. One may argue that the uncertainty captured in this study is at least partly stra-

tegic uncertainty. Specifically, the existing literature has found that when manipulating strategic

uncertainty by providing subjects with false information regarding the variance of contributions by

others, a dramatic drop in contributions occurs when high environmental uncertainty15 is combined

with high strategic uncertainty (Wit and Wilke, 1998).

Appendix F.2 Experimental Design and Procedure

There are 10 rounds of the game in the Experiment Robustness. At the beginning of the experiment,

we randomly assign 1/4 of all subjects to the Full Information Treatment and remove strategic

uncertainty for those subjects so that is not possible they misinterpret cognitive uncertainty. A

screenshot for subjects who are in the Full Information are showed in Figure F.1.

Specifically, these subjects will always have access to the contributions of all other group mem-

bers before making their own decisions, and they are informed that they will always be paired with

three other subjects who are not in the Full Information Treatment. They are also informed in

the instructions that the subjects who are not in the Full Information Treatment are unaware that

they are playing with a subject who has access to their contribution decisions before they make

14Strategic uncertainty is sometimes known as social uncertainty. Literatures has pointed out that social uncertainty
matters in the contribution, as the uncertainty regarding others’ cooperation decisions would result in fear and greed
and hence non-cooperative behaivor (Rapoport and Eshed-Levy, 1989) For example, when social uncertainty persists,
subjects may fail to contribute to public goods because they fear that their contribution will be wasted, as the public
goods will only be provided when the contribution exceed a certain threshold. Likewise, subject may also fail to
contribute due to the greed to free ride others’ contribution.
15Environmental uncertainty refers to the environmental variables that determine the optimal group action. In
Wit and Wilke (1998) and Au (2004), they manipulate a high environmental uncertainty by raising the uncertainty
about the provision threshold, i.e., the amount of contribution needed to provide the public good. They find that
contributions decrease as environmental uncertainty increases. In contrast, there is no environmental uncertainty in
all the experiment in our study.
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Figure F.1: Screenshot of an example decision screen in Treatment Full Information. 

 

Specifically, these subjects will always have access to the contributions of all other group 

members before making their own decisions, and they are informed that they will always be 

paired with three other subjects who are not in the Full Information Treatment. They are also 

informed in the instructions that the subjects who are not in the Full Information Treatment are 

unaware that they are playing with a subject who has access to their contribution decisions 

before they make contribution decision. 

We formulate the hypotheses for Experiment Robustness as follows:  

Hypothesis F.1: Cognitive uncertainty in Full Information is nonzero.  

Hypothesis F.2: The correlation between cognitive uncertainty and contributions is 

statistically significant in the Full Information Treatment. 

 
F.3 Experimental Result  

A total of 84 subjects participated in the Experiment Robustness, with 21 subjects randomly 

assigned to the Full Information treatment. 

The histogram of cognitive uncertainty in the two treatments is depicted in Figure E.1. When 

removing strategic uncertainty, there are approximately 12% more decisions report a zero 

cognitive uncertainty, and there is some evidence that the average cognitive uncertainty 

decreases when strategic uncertainty is removed (5 test: 5 = −0.0607, & = 0.9517; Rank-sum 

test: z = 2.031; p = 0.0423). Nevertheless, the average cognitive uncertainty of 21.38, when 

strategic uncertainty is removed, is statistically significant from zero (t = 10.1776, p = 0.0000). 

Figure F.1. Screenshot of an example decision screen in Treatment Full Information.

contribution decision.

We formulate the hypotheses for Experiment Robustness as follows:

Hypothesis F.1: Cognitive uncertainty in Full Information is nonzero.

Hypothesis F.2: The correlation between cognitive uncertainty and contributions is statistically

significant in the Full Information Treatment.

Appendix F.3 Experimental Result

A total of 84 subjects participated in the Experiment Robustness, with 21 subjects randomly

assigned to the Full Information treatment.

The histogram of cognitive uncertainty in the two treatments is depicted in Figure F.2. When

removing strategic uncertainty, there are approximately 12% more decisions report a zero cognitive

uncertainty, and there is some evidence that the average cognitive uncertainty decreases when

strategic uncertainty is removed (t test: t=-0.0607, p=0.9517; Rank-sum test: z = 2.031, p =

0.0423). Nevertheless, the average cognitive uncertainty of 21.38, when strategic uncertainty is

removed, is statistically significant from zero (t = 10.1776, p = 0.0000). This suggests that the

cognitive uncertainty we measure in the main study is not entirely strategic uncertainty.

Result F.1: Cognitive uncertainty is larger than zero even when strategic uncertainty is removed.

Further, as shown in Table F.1, Columns (1)-(3), the observations from our main study are mar-

ginally supported with the 21 subjects sample whose strategic uncertainty is completely removed.

First, there is a greater contribution from subjects with higher cognitive uncertainty (p=0.149),

and their contributions are closer to half of the endowment when they exhibit more cognitive uncer-

tainty. And once again, we fail to identify any inelastic pattern in the decisions made by subjects

with cognitive uncertainty. Lastly, we do not find that subjects become more certain about their
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Figure F.2. Histogram of cognitive uncertainty

decisions as the game repeats, even in the absence of strategic uncertainty. Finally, subjects do not

rely on past group members’ contribution when they have access to this periods’ data.

Result F.2: We find evidence supporting the robustness of the results from our main study. When

strategic uncertainty is eliminated, contributions are higher when subjects are more uncertain about

their cognitive decisions.
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Figure F.3. Average contribution percentage to the public goods. Cognitive uncertainty is distinguished
by comparing with the average of the cognitive uncertainty within a given round. High cognitive
uncertainty decisions are decisions with cognitive uncertainty that are larger or equal to the average
cognitive uncertainty within a given round, while low cognitive uncertainty is those with a cognitive
uncertainty that are smaller than the average cognitive uncertainty within a given round.
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Table F.1. Experimental Result in Full Information in Experiment Robustness
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This suggests that the cognitive uncertainty we measure in the main study is not entirely 

strategic uncertainty. 

Result F.1: Cognitive uncertainty is larger than zero even when strategic uncertainty is 

removed.  

Table F.1: Experimental Result in Full Information in Experiment Robustness 
 

Dependent Variable Contribution |Contribution – 50% of 
Endowment| 

Contribution Cognitive 
Uncertainty 

 (1) (2) (3) (4) 

     
Cognitive Uncertainty 0.20 -0.21*** 0.12  

(0.13) (0.06) (0.19)  
     
Round   -2.00 -0.05 
   (1.25) (0.48) 
     

Cognitive Uncertainty × 
Round 

  0.01  

  (0.02)  
     
others’ % contribution 0.23** -0.11** 0.17 -0.04 

(0.10) (0.05) (0.12) (0.07) 
     
Lagged members’ % 
contribution 0.15 -0.03 0.10 -0.06 
 (0.10) (0.03) (0.10) (0.05) 
     
     
Observations 189 189 189 189 
R-squared 0.08 0.12 0.66 0.71 
Number of Subjects  21 21   
Approach Subject FE Panel Subject FE OLS 

Note.  Column (1) -(2) report Fixed effects model with cluster-robust standard errors for panels nested within 
subject level. Column (3) – (4) reports the subject level fixed effect OLS estimates, with robust standard errors 
clustered at the subject level. *** p<0.01, ** p<0.05, * p<0.1 

 

Further, as shown in Table F.1, Columns (1)-(3), the observations from our main study are 

marginally supported with the 21 subjects sample whose strategic uncertainty is completely 

removed. First, there is a greater contribution from subjects with higher cognitive uncertainty 

(p=0.149), and their contributions are closer to half of the endowment when they exhibit more 

cognitive uncertainty. And once again, we fail to identify any inelastic pattern in the decisions 

made by subjects with cognitive uncertainty. Lastly, we do not find that subjects become more 

certain about their decisions as the game repeats, even in the absence of strategic uncertainty. 

Finally, subjects do not rely on past group members’ contribution when they have access to 

this periods’ data.  

66


	Introduction
	Experimental Design 
	Testable Hypotheses
	Participation Pool, Logistics, Group, and Treatment
	Summary Statistics

	Cognitive Uncertainty and Apparent Social preference
	Decreasing Cognitive Uncertainty After Receiving Cooperative Advice
	Linking Cognitive Uncertainty to Contribution Decision
	Cognitively Uncertain Decisions are Closer the Cognitive Default
	Cognitive Noise Makes People Contribute More on an Aggregate Level

	Impact of Cooperative Advice From Adviser and GPT
	Local Effect (RD Analysis)
	Global Effect (DID Analysis)


	Conclusion
	Additional Figures
	Additional Tables
	Instruction
	GPT Prompt in Public goods game
	Complexity Experiments
	Experimental Design
	Timeout Instances and Invalid Decisions in Complexity Equation
	Non-binding Complexity Equation Soft
	Experimental Results

	Experiment Robustness
	Motivation
	Experimental Design and Procedure
	Experimental Result



